首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

2.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

3.
多模全球导航卫星系统(Global Navigation Satellite System,GNSS)精密单点定位(precise point positioning,PPP)存在系统间偏差(inter-system bias,ISB),构建了顾及系统间偏差的多模GNSS融合PPP算法,对多星座实验(the multi-GNSS experiment,MGEX)监测网中的7个测站观测数据进行静态解算,获得Galileo、GLONASS、北斗与全球定位系统之间的ISB值。分析结果表明,四系统PPP融合定位在水平分量和高程分量的精度分别为8.9 mm、5.3 mm和10.9 mm,体现出较高的融合定位精度。不同系统ISB值在单天内的稳定性较好,均优于0.12 ns。从多天ISB序列看,ISB存在不规律跳变,变化幅度可达近20 ns。不同类型接收机ISB存在一定差异,同一类型接收机结果相近。综合来看,Galileo ISB值最稳定且结果最优,北斗与GLONASS结果相当。  相似文献   

4.
通过2018年1月多全球卫星导航系统(GNSS)实验(MGEX)的十个测站数据,采用无电离层模型和非差非组合模型,对单系统、双系统和四系统精密单点定位(PPP)进行定位性能分析,定位性能包括收敛时间和定位精度. 实验结果表明,两种PPP模型定位性能相当,但优于单频PPP,在E、N和U方向收敛时间缩短20 min左右,定位精度提高1.6 cm左右;联合多系统能够增加卫星数,改善卫星间几何构型,提升PPP的定位性能. 对GLONASS伪距频间偏差(IFB)采用估计每颗GLONASS卫星的伪距IFB模型和伪距IFB为频率二次多项式模型提升PPP的定位性能,结果表明估计每颗GLONASS卫星的伪距IFB模型要优于伪距IFB为频率二次多项式模型,估计伪距IFB相比忽略伪距IFB在PPP定位性能上有不同程度的提升.   相似文献   

5.
在分析传统GPS/GLONASS组合PPP数学模型中忽略GLONASS码IFB不足的基础上,提出一种基于"多参数"的组合PPP与码IFB估计算法。将"频间偏差"与"系统时差"参数进行合并,通过引入多个独立的"时频偏差"参数对组合PPP中的GLONASS码IFB进行函数模型补偿,同时可实现基于单个测站观测数据的码IFB精确估计。对配备6种GNSS品牌接收机的30个IGS站实测数据进行GLONASS码IFB估计与分析。结果表明:各品牌接收机不同频率通道的GLONASS码IFB可达数米,且表现出与频率的明显相关性,但难以通过简单函数建模为其提供精确的先验改正值;相同品牌接收机的GLONASS码IFB整体上具有相似的特性,而在个别测站会表现出异常特征;即使接收机类型、固件版本及天线类型完全相同的测站,GLONASS码IFB值也可能存在显著差异。新算法能实现对GLONASS码IFB的有效补偿,明显加快组合PPP的收敛速度。虽然引入多个附加参数会导致函数模型自由度减小,但对定位精度的影响有限,与传统"单参数"法进行组合PPP的定位精度相当。  相似文献   

6.
为实现各导航系统的兼容与互操作,需要对各导航系统间的时间偏差进行实时监测.目前,全球卫星导航系统(GNSS)时差监测的主要方法是利用空间信号法进行GNSS时差监测.由于GLONASS系统频分多址的信号体制,导致GLONASS接收机频间偏差(IFB)的存在,GLONASS IFB会影响到GNSS GLONASS的系统时差监测.为消除这一影响,本文提出了基于GLONASS IFB估计的GNSS时差监测方法,由仿真结果可知,利用该方法可以将GPS GLONASS时差监测精度平均提高90%以上.   相似文献   

7.
郝雨时  孙剑伟  隋心  徐爱功  施闯 《测绘学报》2022,(11):2265-2272
为解决不同GNSS间信号差异引起的多GNSS RTK/INS紧组合导航应用中卫星系统间模糊度固定失败的问题,本文提出顾及ISB/IFB的多GNSS RTK/INS紧组合导航方法,以进一步发挥多GNSS在复杂环境下的互补性和灵活性。本文推导了顾及ISB/IFB的多GNSS RTK/INS紧组合导航观测方程,给出了综合利用抗差估计方法和粒子群优化的ISB/IFB参数估计方法。试验结果表明,顾及ISB/IFB参数可以在一定程度上提高卫星系统间模糊度固定成功率;结合抗差估计方法提高卡尔曼状态估计浮点解精度,可显著提高多GNSS RTK/INS紧组合导航系统在复杂环境下的系统间模糊度固定成功率与导航精度。  相似文献   

8.
北斗三号卫星导航系统(BeiDou-3 navigation satellite system, BDS-3)已全面建成并向全球用户提供可靠的定位、导航和授时(positioning, navigation and timing, PNT)服务。为了实现与其他全球卫星导航系统(global navigation satellite system, GNSS)的兼容性和互操作性,BDS-3在BDS-2的基础上调制了B1C和B2a两个新信号,与伽利略系统(Galileo)的E1和E5a实现了频率的复用。系统间偏差(inter-system bias, ISB)对于实现不同GNSS之间的融合处理至关重要,为此提出了基于单差模型的ISB估计与应用算法,并对BDS-3与Galileo重叠频率之间的ISB进行了分析。基于可跟踪BDS-3新信号的几类接收机,揭示了BDS-3和Galileo之间的ISB的特性,在此基础上分析了BDS-3和Galileo组合的实时动态(real-time kinematic, RTK)定位性能。结果表明,基于相同类型的接收机B1C-E1和B2a-E5a之间是不存在ISB的,而基于不同类型的接收机是存在明显的ISB的。此外,BDS-3和Galileo的组合的RTK定位性能相对于单BDS-3和Galileo在模糊度固定成功率和定位精度上都有10%以上的提升。该研究表明,引入ISB的组合RTK定位性能相比于单系统更具优势。  相似文献   

9.
采用MGEX和IGS跟踪网数据,基于PANDA软件实现了同一时空基准框架下的GPS/GLONASS/BDS/Galileo四系统融合精密定轨,采用单天解边界不符值评定轨道精度。对2014年7月至12月6个多月的GNSS融合精密定轨精度、各单系统独立定轨精度进行比较,结果表明:GPS轨道精度与单系统定轨精度基本相当;GLONASS和BDS轨道精度均优于各单系统定轨精度,尤其是BDS卫星,其GEO、IGSO、MEO卫星平均三维轨道精度分别提高了24%、42%、63%;在多GNSS融合精密定轨中,Galileo卫星径向、法向、切向平均精度分别为9.53、8.20、20.17 cm。动态PPP验证结果表明:相比于单系统解算,多系统组合解可以显著加快收敛速度,同时提高了定位精度。  相似文献   

10.
利用全球约110个国际GNSS服务(International GNSS Service,IGS)测站2013年全年观测数据,分析和研究了GPS和全球卫星导航系统(global navigation satellite system,GLONASS)卫星偏航姿态对其精密轨道和钟差的影响。结果表明,偏航姿态对不同型号GPS卫星轨道和钟差的影响程度不同,当采用偏航姿态改正后地影期的BLOCK ⅡA型卫星轨道改善可达17 mm,BLOCK ⅡF为近5 mm,而BLOCK ⅡR几乎不受影响。由于偏航姿态对GLONASS-M卫星定轨精度影响较大,因此,当改正偏航姿态后所有GLONASS卫星相对于IGS最终轨道平均一维差异提高10 mm,相对于德国地学中心(German Research Center for Geosciences,GFZ)最终钟差平均标准差提升0.034 ns。  相似文献   

11.
Multi-GNSS precise point positioning (MGPPP) using raw observations   总被引:5,自引:2,他引:3  
A joint-processing model for multi-GNSS (GPS, GLONASS, BDS and GALILEO) precise point positioning (PPP) is proposed, in which raw code and phase observations are used. In the proposed model, inter-system biases (ISBs) and GLONASS code inter-frequency biases (IFBs) are carefully considered, among which GLONASS code IFBs are modeled as a linear function of frequency numbers. To get the full rank function model, the unknowns are re-parameterized and the estimable slant ionospheric delays and ISBs/IFBs are derived and estimated simultaneously. One month of data in April, 2015 from 32 stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) tracking network have been used to validate the proposed model. Preliminary results show that RMS values of the positioning errors (with respect to external double-difference solutions) for static/kinematic solutions (four systems) are 6.2 mm/2.1 cm (north), 6.0 mm/2.2 cm (east) and 9.3 mm/4.9 cm (up). One-day stabilities of the estimated ISBs described by STD values are 0.36 and 0.38 ns, for GLONASS and BDS, respectively. Significant ISB jumps are identified between adjacent days for all stations, which are caused by the different satellite clock datums in different days and for different systems. Unlike ISBs, the estimated GLONASS code IFBs are quite stable for all stations, with an average STD of 0.04 ns over a month. Single-difference experiment of short baseline shows that PPP ionospheric delays are more precise than traditional leveling ionospheric delays.  相似文献   

12.
Navigation applications will benefit significantly from the improved reliability, availability, and accuracy offered by combining BeiDou Navigation Satellite System (BDS) and Global Positioning System (GPS). In the BDS/GPS navigation data fusion model, the effect of inter-system bias (ISB) must be considered. We present a detailed analysis of the pseudorange measurements for BDS and GPS and demonstrate the existence of code ISB in BDS/GPS measurements. The ISB mainly consists of the time system offset, the coordinate system difference, and the inter-system hardware delay bias. A method based on statistical hypothesis testing is proposed to assess the stability and difference of the BDS–GPS ISB. Real data from 18 stations equipped with six types of receivers are used to compute the ISB. The results illustrate that (a) receiver-dependent ISBs are evident and comparatively consistent, with the maximum ISB observed in our experiments being ?1516 ns, (b) these receiver-dependent ISBs exhibit great stability in terms of their standard deviation and intra-day variation, and (c) the estimated ISBs for each BDS satellite type with respect to GPS are consistent.  相似文献   

13.
GLONASS precise point positioning (PPP) performance is affected by the inter-frequency biases (IFBs) due to the application of frequency division multiple access technique. In this contribution, the impact of GLONASS pseudorange IFBs on convergence performance and positioning accuracy of GLONASS-only and GPS + GLONASS PPP based on undifferenced and uncombined observation models is investigated. Through a re-parameterization process, the following four pseudorange IFB handling schemes were proposed: neglecting IFBs, modeling IFBs as a linear or quadratic polynomial function of frequency number, and estimating IFBs for each GLONASS satellite. One week of GNSS observation data from 132 International GNSS Service stations was selected to investigate the contribution of simultaneous estimation of GLONASS pseudorange IFBs on GLONASS-only and combined GPS + GLONASS PPP in both static and kinematic modes. The results show that considering IFBs can speed up the convergence of PPP using GLONASS observations by more than 20%. Apart from GLONASS-only kinematic PPP, the positioning accuracy of GLONASS-only and GPS + GLONASS PPP is comparable among the four schemes. Overall, the scheme of estimating IFBs for each GLONASS satellite outperforms the other schemes in both convergence time reduction and positioning accuracy improvement, which indicates that the GLONASS IFBs may not strictly obey a linear or quadratic function relationship with the frequency number.  相似文献   

14.
Although double-differenced (DD) observations between satellites from different systems can be used in multi-GNSS relative positioning, the inter-system DD ambiguities cannot be fixed to integer because of the existence of the inter-system bias (ISB). Obviously, they can also be fixed as integer along with intra-system DD ambiguities if the associated ISBs are well known. It is critical to fix such inter-system DD ambiguities especially when only a few satellites of each system are observed. In most of the existing approaches, the ISB is derived from the fractional part of the inter-system ambiguities after the intra-system DD ambiguities are successfully fixed. In this case, it usually needs observations over long times depending on the number of observed satellites from each system. We present a new method by means of particle filter to estimate ISBs in real time without any a priori information based on the fact that the accuracy of a given ISB value can be qualified by the related fixing RATIO. In this particle filter-based method, the ISB parameter is represented by a set of samples, i.e., particles, and the weight of each sample is determined by the designed likelihood function related to the corresponding RATIO, so that the true bias value can be estimated successfully. Experimental validations with the IGS multi-GNSS experiment data show that this method can be carried out epoch by epoch to provide precise ISB in real time. Although there are only one, two, or at most three Galileo satellites observed, the successfully fixing rate increases from 75.5% for GPS only to 81.2%. In the experiment with five GPS satellites and one Galileo satellites, the first successfully fixing time is reduced to half of that without fixing the inter-system DD ambiguities.  相似文献   

15.
Integer ambiguity resolution (IAR) appreciably improves the position accuracy and shortens the convergence time of precise point positioning (PPP). However, while many studies are limited to GPS, there is a need to investigate the performance of GLONASS PPP ambiguity resolution. Unfortunately, because of the frequency-division multiple-access strategy of GLONASS, GLONASS PPP IAR faces two obstacles. First, simultaneously observed satellites operate at different wavelengths. Second and most importantly, distinct inter-frequency bias (IFB) exists between different satellites. For the former, we adopt an undifferenced method for uncalibrated phase delay (UPD) estimation and proposed an undifferenced PPP IAR strategy. We select a set of homogeneous receivers with identical receiver IFB to perform UPD estimation and PPP IAR. The code and carrier phase IFBs can be absorbed by satellite wide-lane and narrow-lane UPDs, respectively, which is in turn consistent with PPP IAR using the same type of receivers. In order to verify the method, we used 50 stations to generate satellite UPDs and another 12 stations selected as users to perform PPP IAR. We found that the GLONASS satellite UPDs are stable in time and space and can be estimated with high accuracy and reliability. After applying UPD correction, 91 % of wide-lane ambiguities and 99 % of narrow-lane ambiguities are within (?0.15, +0.15) cycles of the nearest integer. After ambiguity resolution, the 2-hour static PPP accuracy improves from (0.66, 1.42, 1.55) cm to (0.38, 0.39, 1.39) cm for the north, east, and up components, respectively.  相似文献   

16.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号