首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李美娟  胡伍生 《测绘工程》2010,19(2):35-36,41
结合某大坝工程实测数据,建立该大坝位移量和相关因子的逐步回归模型和神经网络模型,并对两者模型结果进行比较,结果表明神经网络方法在大坝变形分析和预报方面效果良好。  相似文献   

2.
水稻叶面积指数(leaf area index,LAI)是评价其长势的重要农学参数,高光谱遥感能够实现叶面积指数的快速无损监测。为了寻找反演水稻LAI的最优植被指数,扩展水稻LAI高光谱估测模型的普适性,选取宁夏引黄灌区水稻为研究对象,通过设置不同氮素处理,借助相关分析、回归分析等方法研究高光谱植被指数与水稻LAI之间的定量关系,并通过确立的最优波段组合,构建4种植被指数与水稻LAI的高光谱反演模型。结果表明,水稻LAI在抽穗末期达到最大值,并随氮素水平的增加而增加;水稻冠层原始光谱反射率在400~722 nm和1 990~2 090 nm波段与LAI达到极显著负相关水平,在近红外区域760~1 315 nm与LAI呈极显著正相关。模型检验结果表明,以比值植被指数RVI(850,750)为变量建立的水稻LAI估测模型最佳,研究结果可为水稻LAI的高光谱估测提供地域参考。  相似文献   

3.
Abstract

In this study, we tested whether GLS field symptoms on maize can be detected using hyperspectral data re-sampled to WorldView-2, Quickbird, RapidEye and Sentinel-2 resolutions. To achieve this objective, Random Forest algorithm was used to classify the 2013 re-sampled spectra to represent the three identified disease severity categories. Results showed that Sentinel-2, with 13 spectral bands, achieved the highest overall accuracy and kappa value of 84% and 0.76, respectively, while the WorldView-2, with eight spectral bands, yielded the second highest overall accuracy and kappa value of 82% and 0.73, respectively. Results also showed that the 705 and 710 nm red edge bands were the most valuable in detecting the GLS for Sentinel-2 and RapidEye, respectively. On the re-sampled WorldView 2 and Quickbird sensor resolutions, the respective 608 and 660 nm in the yellow and red bands were identified as the most valuable for discriminating all categories of infection.  相似文献   

4.
土壤Cu含量高光谱反演的BP神经网络模型   总被引:2,自引:0,他引:2  
郭云开  刘宁  刘磊  李丹娜  朱善宽 《测绘科学》2018,(1):135-139,152
以高光谱数据为基础,针对传统土壤重金属反演模型拟合度低、预测效果差的缺点,提取光谱预处理后的特征波段数据进行相关性分析,选取860nm一阶微分光谱反射率建立基于Matlab的重金属Cu含量BP神经网络预测模型,模型的拟合优度为0.721,预测精度达82.3%,高于传统单元线性回归模型0.414的拟合优度与76.1%的预测精度。研究表明,BP神经网络模型具有良好的拟合优度与预测能力,能更有效预测土壤中重金属Cu的含量。  相似文献   

5.
The fraction of absorbed photosynthetically active radiation (fAPAR) is an important plant physiological index that is used to assess the ability of vegetation to absorb PAR, which is utilized to sequester carbon in the atmosphere. This index is also important for monitoring plant health and productivity, which has been widely used to monitor low stature crops and is a crucial metric for food security assessment. The fAPAR has been commonly correlated with a greenness index derived from spaceborne optical imagery, but the relatively coarse spatial or temporal resolution may prohibit its application on complex land surfaces. In addition, the relationships between fAPAR and remotely sensed greenness data may be influenced by the heterogeneity of canopies. Multispectral and hyperspectral unmanned aerial vehicle (UAV) imaging systems, conversely, can provide several spectral bands at sub-meter resolutions, permitting precise estimation of fAPAR using chemometrics. However, the data pre-processing procedures are cumbersome, which makes large-scale mapping challenging. In this study, we applied a set of well-verified image processing protocols and a chemometric model to a lightweight, frame-based and narrow-band (10 nm) UAV imaging system to estimate the fAPAR over a relatively large cultivated land area with a variety of low stature vegetation of tropical crops along with native and non-native grasses. A principal component regression was applied to 12 bands of spectral reflectance data to minimize the collinearity issue and compress the data variation. Stepwise regression was employed to reduce the data dimensionality, and the first, third and fifth components were selected to estimate the fAPAR. Our results indicate that 77% of the fAPAR variation was explained by the model. All bands that are sensitive to foliar pigment concentrations, canopy structure and/or leaf water content may contribute to the estimation, especially those located close to (720 nm) or within (750 nm and 780 nm) the near-infrared spectral region. This study demonstrates that this narrow-band frame-based UAV system would be useful for vegetation monitoring. With proper pre-flight planning and hardware improvement, the mapping of a narrow-band multispectral UAV system could be comparable to that of a manned aircraft system.  相似文献   

6.
逐步回归模型在地表沉降监测中的应用研究   总被引:3,自引:0,他引:3  
介绍了多因子逐步回归模型的建模原理及其实现过程,通过对某城市地表沉降监测数据的实际处理分析,并于多元线性回归模型进行对比分析,验证了多因子逐步回归模型在地表沉降监测数据处理中的适用性与可靠性。  相似文献   

7.
The common spectra wavebands and vegetation indices (VI) were identified for indicating leaf nitrogen accumulation (LNA), and the quantitative relationships of LNA to canopy reflectance spectra were determined in both wheat (Triticum aestivum L.) and rice (Oryza sativa L.). The 810 and 870 nm are two common spectral wavebands indicating LNA in both wheat and rice. Among all ratio vegetation indices (RVI), difference vegetation indices (DVI) and normalized difference vegetation indices (NDVI) of 16 wavebands from the MSR16 radiometer, RVI (870, 660) and RVI (810, 660) were most highly correlated to LNA in both wheat and rice. In addition, the relations between VIs and LNA gave better results than relations between single wavebands and LNA in both wheat and rice. Thus LNA in both wheat and rice could be indicated with common VIs, but separate regression equations are better for LNA monitoring.  相似文献   

8.
In situ hyperspectral reflectance data were studied at 50 bands (10 nm bandwidth) over the 400–900 nm spectral range to determine their potential for distinguishing among nine aquatic plant species: American lotus [Nelumbo lutea (Willd.) Pers.], American pondweed (Potamogeton nodusus Poir.), giant duckweed [Spirodela polyrrhiza (L.) Schleid.], Mexican waterlily (Nymphaea mexicana Zucc.), white waterlily (Nymphaea odorata Aiton), spatterdock [Nuphar lutea (L.) Sm.], giant salvinia (Salvinia molesta Mitchell), waterhyacinth [Eichhornia crassipes (Mart.) Solms] and waterlettuce (Pistia stratiotes L.). The species were studied on three dates: 30 May, 1 July and 3 August 2009. All nine species were studied in July and August, while only eight species were studied in May; giant duckweed was not studied in May due to insufficient availability. Two procedures were used to determine the optimum bands for discriminating among species: multiple comparison range tests and stepwise discriminant analysis. Multiple comparison range tests results for May showed that most separations among species occurred at bands 795–865 nm in the near-infrared (NIR) spectral region where up to six species could be distinguished. For July, few species could be distinguished amongthe 50 bands; most separations occurred at the 715 nm red-NIR edge band where four species could be differentiated. The optimum bands in August occurred in the green (525–595 nm), red (605–635 nm) and red-NIR edge (695–705 nm) spectral regions where up to six species could be distinguished. Stepwise discriminant analysis identified 11 bands in the blue, green, red-NIR edge and NIR spectral regions to be significant to discriminate among the eight species in May. For July and August, stepwise discriminant analysis identified 15bands and 13 bands, respectively, from the blue to NIR regions to be significant for discriminating among the nine species.  相似文献   

9.
This study assessed the strength of Sentinel-2 multispectral instrument (MSI) derived Red Edge (RE) bands in estimating Leaf Area Index (LAI) and mapping canopy storage capacity (CSC) for hydrological applications in wattle infested ecosystems. To accomplish this objective, this study compared the estimation strength of models derived, using standard bands (all bands excluding the RE band) with those including RE bands, as well as different vegetation indices. Sparse Partial Least Squares (SPLSR) and Partial Least Squares Regression (PLSR) ensembles were used in this study. Results showed that the RE spectrum covered by the Sentinel-2 MSI satellite reduced the estimation error by a magnitude of 0.125 based on simple ratio (RE SR) vegetation indices from 0.157 m2· m?2 based on standard bands, and by 0.078 m2· m?2 based on red edge normalised difference vegetation (NDVI-RE). The optimal models for estimating LAI to map CSC were obtained based on the RE bands centered at 705 nm (Band 5), 740 nm (Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a). A root mean square error of prediction (RMSEP) of 0.507 m2· m?2 a relative root mean square error of prediction (RRMSEP) of 11.3% and R2 of 0.91 for LAI and a RMSEP of 0.246 m2/m2 (RRMSEP = 7.9%) and R2 of 0.91 for CSC were obtained. Overall, the findings of this study underscore the relevance of the new copernicus satellite product in rapid monitoring of ecosystems that are invaded by alien invasive species.  相似文献   

10.
ABSTRACT

Several machine learning regression models have been advanced for the estimation of crop biophysical parameters with optical satellite imagery. However, literature on the comparative performances of such models is still limited in range and scope, especially under multiple data sources, despite the potential of multi-source imagery to improving crop monitoring in cloudy areas. To fill in this knowledge gap, this study explored the synergistic use of Landsat-8, Sentinel-2A, China’s environment and disaster monitoring and forecasting satellites (HJ-1 A and B) and Gaofen-1 (GF-1) data to evaluate four machine learning regression models that include Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), and Gradient Boosting Decision Tree (GBDT), for rice dry biomass estimation and mapping. Taking a major rice cultivation area in southeast China as case study during the 2016 and 2017 growing seasons, a cross-calibrated time series of the Enhanced Vegetation Index (EVI) was obtained from the quad-source optical imagery and on which the aforementioned models were applied, respectively. Results indicate that in the before rice heading scenario, the most accurate dry biomass estimates were obtained by the GBDT model (R2 of 0.82 and RMSE of 191.8 g/m2) followed by the RF model (R2 of 0.79 and RMSE of 197.8 g/m2). After heading, the k-NN model performed best (R2 of 0.43 and RMSE of 452.1 g/m2) followed by the RF model (R2 of 0.42 and RMSE of 464.7 g/m2). Whist the k-NN model performed least in the before heading scenario, SVM performed least in the after heading scenario. These findings may suggest that machine learning regression models based on an ensemble of decision trees (RF and GBDT) are more suitable for the estimation of rice dry biomass, at least with optical satellite imagery. Studies that would extend the evaluation of these machine learning models, to other parameters like leaf area index, and to microwave imagery, are hereby recommended.  相似文献   

11.
The challenge of assessing and monitoring the influence of rangeland management practices on grassland productivity has been hampered in southern Africa, due to the lack of cheap earth observation facilities. This study, therefore, sought to evaluate the capability of the newly launched Sentinel 2 multispectral imager (MSI) data, in relation to Hyperspectral infrared imager (HyspIRI) data in estimating grass biomass subjected to different management practices, namely, burning, mowing and fertilizer application. Using sparse partial least squares regression (SPLSR), results showed that HyspIRI data exhibited slightly higher grass biomass estimation accuracies (RMSE = 6.65 g/m2, R2 = 0.69) than Sentinel 2 MSI (RMSE = 6.79 g/m2, R2 = 0.58) across all rangeland management practices. Student t-test results then showed that Sentinel 2 MSI exhibited a comparable performance to HyspIRI in estimating the biomass of grasslands under burning, mowing and fertilizer application. In comparing the RMSEs derived using wave bands and vegetation indices of HyspIRI and Sentinel, no statistically significant differences were exhibited (α = 0.05). Sentinel (Bands 5, 6 and 7) and HyspIRI (Bands 730 nm, 740 nm, 750 nm, 710 nm), as well as their derived vegetation indices, yielded the highest predictive accuracies. These findings illustrate that the accuracy of Sentinel 2 MSI data in estimating grass biomass is acceptable when compared with HyspIRI. The findings of this work provide an insight into the prospects of large-scale grass biomass modeling and prediction, using cheap and readily available multispectral data.  相似文献   

12.
This paper discusses a statistical and band transformation based approach to select bands for hyperspectral image analysis. Hyperspectral images contain large number of spectral bands with redundant information about the spectral classes in the image scene. It is necessary to reduce the high dimensionality of the data for the processing of hyperspectral data. We report a feature selection technique that removes correlated spectral bands using band decorrelation technique and obtains maximum variance image bands based on factor analysis. Factor analysis method of band selection technique is also validated against existing methods of band selection. The study is carried out for the agriculturally rich area of Musiri region of South India that has varied landcover types. Evaluation of the band selection procedure is done using signature separability measures such as Euclidean distance, Divergence, Transformed divergence and Jeffries Matusita distance. Results indicated that selected bands exhibited maximum separability and also occurred predominantly at wavelength 700 nm, 850, 1000 nm, 1200 nm, 1648 nm and 2200 nm.  相似文献   

13.
通过分析温度、风速气压、日照和拉索拉力等因素,建立函数关系模型,结合南京长江五桥钢壳-混凝土索塔变形监测实例,采用基于小波阈值去噪、岭回归、BP神经网络的多算法组合模型,进行不同组合算法的实验,预测索塔监测点的坐标,与全站仪观测的索塔变形数据进行比较,得到小波-岭回归-BP神经网.  相似文献   

14.
一种盾构施工引起的地面沉降预测方法   总被引:1,自引:0,他引:1  
针对盾构施工引起的地面沉降的影响因素众多、关系错综复杂,常规数学模型难以准确预测沉降量的问题,该文提出了采用主成分分析法和粒子群优化的支持向量机方法来建立预测模型。并结合工程实例将预测结果与常用的多元线性回归模型和基于Levenberg-Marquardt算法改进的BP神经网络模型(LM-BP)的预测结果做了比较。结果表明:PCA-PSO-SVM的预测结果精度较多元线性回归模型和LM-BP神经网络有很大的提高,证明了该研究方法具有一定的理论意义和参考价值。  相似文献   

15.
基于高光谱遥感反射比的太湖水体叶绿素a含量估算模型   总被引:19,自引:1,他引:19  
旨在寻找叶绿素a的高光谱遥感敏感波段并建立其定量估算模型。通过对太湖水体的连续监测,获得了从2004年6月到8月3个月的太湖水体高光谱数据和水质化学分析数据。利用实测的高光谱数据分析计算太湖水体的离水辐亮度和遥感反射比;然后,通过相关分析寻找反演叶绿素a浓度的高光谱敏感波段,进而建立反演太湖水体叶绿素a浓度的高光谱遥感定量估算模型,并用相关数据对模型进行精度分析。研究发现,水体的遥感反射比光谱在719nm和725nm存在两个峰,其中719nm处的峰更明显且稳定。通过模型的对比分析,发现用这两个峰值处的遥感反射比参与建模可以提高叶绿素a的估算精度;并且认为由反射比比值变量R719/R670所建立的线性模型对叶绿素a浓度的估算精度最理想。  相似文献   

16.
The objective of this research is to select the most sensitive wavelengths for the discrimination of the imperceptible spectral variations of paddy rice under different cultivation conditions. The paddy rice was cultivated under four different nitrogen cultivation levels and three water irrigation levels. There are 2151 hyperspectral wavelengths available, both in hyperspectral reflectance and energy space transformed spectral data. Based on these two data sets, the principal component analysis (PCA) and band-band correlation methods were used to select significant wavelengths with no reference to leaf biochemical properties, while the partial least squares (PLS) method assessed the contribution of each narrow band to leaf biochemical content associated with each loading weight across the nitrogen and water stresses. Moreover, several significant narrow bands and other broad bands were selected to establish eight kinds of wavelength (broad-band) combinations, focusing on comparing the performance of the narrow-band combinations instead of broad-band combinations for rice supervising applications. Finally, to investigate the capability of the selected wavelengths to diagnose the stress conditions across the different cultivation levels, four selected narrow bands (552, 675, 705 and 776 nm) were calculated and compared between nitrogen-stressed and non-stressed rice leaves using linear discriminant analysis (LDA). Also, wavelengths of 1158, 1378 and 1965 nm were identified as the most useful bands to diagnose the stress condition across three irrigation levels. Results indicated that good discrimination was achieved. Overall, the narrow bands based on hyperspectral reflectance data appear to have great potential for discriminating rice of differing cultivation conditions and for detecting stress in rice vegetation; these selected wavelengths also have great potential use for the designing of future sensors.  相似文献   

17.
隧道变形监测周期长、内容多且影响因素复杂,因此需要对隧道监测方法进行不断的改进,对隧道的健康状态进行实时评估。研究变形监测范畴内基于BP神经网络的隧道安全状态评估模型,组建集卫星定位技术、测量机器人、传感器技术、移动网络通信等为一体的现代化物联网模式下的隧道变形监测系统,分析多源数据的变形特征,结合专家经验知识,实现基于BP神经网络与变形监测成果下的隧道安全状态评估,为隧道变形监测及安全状态评估提供一种新颖而有效的方法。  相似文献   

18.
针对已有的遗传BP神经网络土地利用变化预测模型存在BP神经网络隐层节点不易确定、创建过程烦琐等问题,本文利用输入层与隐藏层神经节点数量关系原理确定隐层节点,在Sheffield工具箱环境下进行遗传算法的编程,简化遗传BP神经网络土地利用变化预测模型的创建。结果表明,利用输入层和隐含层节点数量关系创建的遗传BP神经网络土地利用变化预测模型,可以实现土地利用变化的预测,而且在效率和精度上均优于传统BP神经网络模型,且操作简便。  相似文献   

19.
BP模型在变形监测数据分析和预测中的应用   总被引:2,自引:0,他引:2  
本文通过对BP网络模型的研究,建立BP神经网络预测模型,并使用VC++语言编程加以实现。将模型应用于东江大坝实测变形监测数据的分析和预测,对时间序列建模和以环境变量为自变量两种方法建模,发现这两种模型都可以很好的实现变形量的预测,且以自变量为因素所建立的模型预测精度更高。  相似文献   

20.
Crop Residue Discrimination Using Ground-Based Hyperspectral Data   总被引:1,自引:0,他引:1  
Crop residue has become an increasingly important factor in agriculture management. It assists in the reduction of soil erosion and is an important source of soil organic carbon (soil carbon sequestration). In recent past, remote sensing, especially narrowband, data have been explored for crop residue assessment. In this context, a study was carried out to identify different narrow-bands and evaluate the performance of SWIR region based spectral indices for crop residue discrimination. Ground based hyperspectral data collected for wheat crop residue was analyzed using Stepwise Discriminant Analysis (SDA) technique to select significant bands for discrimination. Out of the seven best bands selected to discriminate between matured crop, straw heap, combine-harvested field with stubbles and soil, four bands were from SWIR (1980, 2030, 2200, 2440 nm) region. Six spectral indices were computed, namely CAI, LCA, SINDRI, NDSVI, NDI5 and hSINDRI for crop residue discrimination. LCA and CAI showed to be best (F?>?115) in discriminating above classes, while LCA and SINDRI were best (F?>?100) among all indices in discriminating crop residue under different harvesting methods. Comparison of different spectral resolution (from 1 nm to 150 nm) showed that for crop residue discrimination a resolution of 100 nm at 2100–2300 m region would be sufficient to discriminate crop residue from other co-existing classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号