首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对ASTER GDEM高程精度还未得到充分验证,以江西省莲花县为试验区,使用ICESat-2数据系统分析了ASTER GDEM在坡度、地形起伏度和土地利用类型中的误差分布。结果表明,ASTER GDEM受坡度、地形起伏度影响严重,随坡度、地形起伏度增加,GDEM误差呈上升趋势;对于不同土地利用类型,GDEM误差存在较大差异,在水域误差最大,在建设用地误差最小。最后,使用后向传播神经网络(BPNN)对莲花县ASTER GDEM修正,结果发现BPNN模型可以有效改善其高程精度。  相似文献   

2.
ASTER GDEM与SRTM3高程差异影响因素分析   总被引:3,自引:0,他引:3  
作为最新发布的全球地形数据,ASTER GDEM比目前常用的SRTM3数据有着更高的分辨率和更广的覆盖范围,对于相关地学分析具有重要意义。本文以华中地区为研究区域,对ASTER GDEM与SRTM3数据进行了比较,重点分析了坡度、坡向、地形起伏度、土地利用类型、植被覆盖度、生成ASTER GDEM栅格点高程数据所用的ASTER DEM影像数等因素对2种DEM数据高程差异的影响。结果表明,在研究区域内,ASTER GDEM高程比SRTM3高程平均低5.42 m,两种DEM数据高程差异的RMS值为16.90 m;ASTER GDEM与SRTM3之间的高程差异随着坡度、地形起伏度、植被覆盖度的增大而增大,而ASTER DEM影像数越大,高程差异越小;坡向、土地利用类型对高程差异也有影响。  相似文献   

3.
本文侧重于介绍智能化摄影测量机器学习的高差拟合神经网络方法。观测手段和处理方式等限制导致全球高质量无缝DEM数据的缺乏,进而制约了它在水文、地质、气象及军事等领域的应用。本文提出了一种基于高差拟合神经网络的多源DEM融合方法,尝试融合全球DEM产品SRTM1、ASTER GDEM v2和激光雷达测高数据ICESat GLAS。首先,根据ICESat GLAS的相关参数及与DEM数据的高程差值,结合坡度自适应的思想设置高差阈值对ICESat GLAS进行滤波,剔除异常数据点。然后,以ICESat GLAS数据为控制点,利用神经网络模型拟合ASTER GDEM v2的误差分布。以地形坡度信息和经纬度坐标作为网络输入,ICESat GLAS和ASTER GDEM v2的高程差值作为目标输出,训练得到预测高差,将其与ASTER GDEM v2高程值相加即可获得校正结果。最后,引入TIN差分曲面的方法,利用校正后的ASTER GDEM v2高程值对SRTM1的数据空洞进行填充,融合生成空间无缝DEM。本文通过随机选取数据进行真实试验,对模型进行了精度验证,并给出了处理结果的定量评价和目视效果。结果表明,不论是空洞还是整体区域,本文方法相比其他DEM数据集和其他方法的处理结果都能够在RMSE上表现出优势,同时,本文提出的方法能够有效克服ASTER GDEM中异常值的影响,得到空间无缝DEM。  相似文献   

4.
为探究ASTER GDEMV3、SRTM1 DEM和AW3D30 DEM 3种开源DEM数据的高程精度,本文以高精度ICESat-2 ATLAS测高数据为参考数据,利用GIS统计分析、误差相关分析及数理统计对DEM的高程精度进行对比评价。结果表明:①AW3D30的质量最稳定;SRTM1 DEM在平原精度最高;在高原山地精度由高到低依次为AW3D30 DEM、ASTER GDEMV3、SRTM1 DEM。②DEM数据高程精度受地表覆盖影响较大,且与地形因素密切相关,在相同地表覆盖的两个研究区中DEM数据高程精度表现情况不一致,SRTM在平原地表覆盖下精度表现最好,平均误差为3.15 m,AW3D30 DEM在山地地表覆盖下精度表现最好,平均误差为7.61 m。③坡度对DEM数据的高程精度影响较大,在两个研究区3种DEM数据的高程误差均随坡度的增加而增加;坡向对DEM数据的高程精度影响较小,未发现明显的规律。  相似文献   

5.
由于数据获取与后期处理方式不同,先进星载热发射和反射辐射仪全球数字高程模型(advanced spaceborne thermal emission and reflection radiometer global digital elevation model,ASTER GDEM)和航天飞机雷达地形测绘任务(shuttle radar topography mission,SRTM)数据在高程精度上存在差异,采用弹性反馈(resilient backpropagation,RProp)神经网络算法对二者进行融合处理,实现优势互补以提升高程精度。选取两个黄土丘陵沟壑地貌样区分别用于模型建立与效果验证,1∶10 000高程精度为参考数据,在建模样区应用RProp神经网络算法构建ASTER GDEM高程校正模型、SRTM1高程校正模型、ASTER GDEM与SRTM1高程融合模型,同时应用误差反向传播(back propagation,BP)神经网络建立ASTER GDEM与SRTM1高程融合模型,将这些模型的高程精度优化效果进行对比,并在验证样区检验RProp融合模型的可行性。结果表明,RProp融合模型的高程校正效果整体上优于ASTER GDEM高程校正模型、SRTM1高程校正模型和BP神经网络融合模型,高程均方根误差分别降低6.81 m、0.34 m与0.19 m,具有良好的适用性与误差校正效果。  相似文献   

6.
为了解我国ASTER GDEM数据高程精度,在考虑空间分布的情况下,选取我国东部辽宁、山东、浙江和海南4个地区的平原、丘陵、山地等作为典型研究区,并以1∶5万DEM为假定真值、以1∶25万DEM为参照,通过DEM面误差可视化分析和DEM面误差信息熵模型等方法对ASTER GDEM数据的高程精度做了分析。结果表明:ASTER GDEM数据高程误差在整个地图上分布是否均匀与其高程精度高低无决定关系;在山地和丘陵地形研究区,其数据高程精度要高于SRTM DEM和1∶25万DEM。总体来看,中国东部地区ASTER GDEM数据高程精度整体上要高于SRTM DEM和1∶25万DEM,但低于1∶10万DEM。  相似文献   

7.
针对数字高程模型数据源不同会带来一定的不确定性和差异性的问题,选取德国某露天矿为实验区,以高精度DEM数据TanDEM-X为参照,对比了SRTM、AW3D30、ASTER GDEM与TanDEM-X数据的高程精度,分析了DEM数据的差异。结果表明:(1)露天矿区的开采和复垦活动明显地体现在了不同时期获取的DEM高程变化中;(2)在非采矿区,不同DEM数据之间具有较好的一致性,TanDEM-X数据与其他数据的高差均方根误差分别为2.64 m、5.88 m、2.99 m;(3)DEM空间分辨率越高提取得到坡度最值越大,地形描述准确性越高。研究结果为露天矿区DEM应用提供参考。  相似文献   

8.
为了克服现有SRTM和ASTER各自缺陷,提升公共DEM精度,本文提出了一种顾及地形坡度的SRTM和ASTER加权融合方法。首先对两种DEM进行地理配准;然后计算不同坡度等级下SRTM和ASTER的高程误差,并得到DEM融合权重;最后采用加权平均法对SRTM和ASTER进行融合。高精度控制点的检验表明:融合后DEM精度有明显提高,相比于原始SRTM和ASTER高程误差,标准差分别降低了5.65 m和1.20 m。  相似文献   

9.
在无控制点的卫星影像正射校正中,大多采用DSM/DEM数据作为辅助数据来消除或限制因地形起伏引起的形变,然而经不同格网密度的DSM/DEM正射校正后的影像对后续处理会产生不同程度的影响,如对地物分类精度产生影响。针对这一问题,本文分别采用不同的DSM/DEM数据(China DSM 15 m、ASTER GDEM 30 m和SRTM 90 m)对资源三号影像进行正射校正,然后对正射校正后影像利用支持向量机进行分类,比较正射校正后影像结果的分类精度。结果表明:在相同重采样方法下,影像经China DSM 15 m DSM正射校正后结果的分类精度优于ASTER GDEM 30 m DEM和SRTM 90 m DEM。  相似文献   

10.
通过构建ASTER GDEM(advanced spaceborne thermal emission and reflection radiometer global digital elevation model)高程误差与影响因子间的关系模型,可对其高程精度进行有效校正。选取陕北黄土高原境内长武、宜君、甘泉、延川4个不同地貌类型的样区,以1∶5万DEM(digital elevation model)作为参考数据,经过数据预处理后,计算各点位高程误差值及相关地形因子和地表覆盖指数;提取一定数量的采样点和检验点,引入随机森林回归算法,建立高程误差预测模型,以对高程精度进行校正,并与多元回归模型进行比较分析。实验结果表明,ASTER GDEM的高程误差特征与地形条件有较强的相关性;随机森林回归预测模型整体上优于多元回归模型,具有较好的适用性与误差校正效果,可分别将长武、宜君、甘泉、延川的高程误差均值减小3.08 m、3.00 m、3.61 m和6.95 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号