首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reformulation of geodetic measurement processes within the framework of general relativity is discussed. The metric tensor plays an important role in general relativity and has to be represented with respect to a set of appropriate charts. Almost every quantity of interest in geodetic or geophysical applications refers to a geocentric, Earth-fixed coordinate system (chart), therefore they are of great importance in geodesy and geophysics. The space–time metric with respect to an Earth-fixed chart is derived at first post-Newtonian order. The field equations determining the terrestrial gravitational field are derived and its explicit representation is outlined. The impact of the results on the modelling of geodetic measurement processes including space–time positioning scenarios as well as the high-precision gravitational field estimation is outlined. Received: 7 January 1998 / Accepted: 17 August 1999  相似文献   

2.
随着甚长基线干涉测量(VLBI)、卫星激光测距(SLR)、激光测月(LLR)、全球卫星导航系统(GNSS)、多里斯系统(DORIS)等多种空间大地测量手段的使用,地球自转参数(ERP)的测量精度不断提高,为航天器导航、深空探测等诸多领域提供了高精度的国际天球参考系(ICRS)和国际地表参考系统(ITRS)之间的转换参数. 以国际地球自转与参考系服务发布的C04序列为基础序列,选取500天ERP序列,分析不同测量手段得到的ERP数据的误差分布情况,为研究利用不同数据之间的一致性进行精度检核的可行性及精度水平提供数据基础,同时也为ERP预报提供更多的数据选择.   相似文献   

3.
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of \(\varDelta \hbox {UT1}\) results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several \(\upmu \)as. Moreover, the CRF is influenced by up to \(50~\upmu \)as if the station coordinates and EOP are dominated by the satellite techniques.  相似文献   

4.
5.
Very long baseline interferometry (VLBI) tracking of satellites is a topic of increasing interest for the establishment of space ties. This shall strengthen the connection of the various space geodetic techniques that contribute to the International Terrestrial Reference Frame. The concept of observing near-Earth satellites demands research on possible observing strategies. In this paper, we introduce this concept and discuss its possible benefits for improving future realizations of the International Terrestrial Reference System. Using simulated observations, we develop possible observing strategies that allow the determination of radio telescope positions in the satellite system on Earth with accuracies of a few millimeters up to 1–2 cm for weekly station coordinates. This is shown for satellites with orbital heights between 2,000 and 6,000 km, observed by dense regional as well as by global VLBI-networks. The number of observations, as mainly determined by the satellite orbit and the observation interval, is identified as the most critical parameter that affects the expected accuracies. For observations of global positioning system satellites, we propose the combination with classical VLBI to radio sources or a multi-satellite strategy. Both approaches allow station position repeatabilities of a few millimeters for weekly solutions.  相似文献   

6.
现代大地测量参考系统   总被引:9,自引:0,他引:9  
宁津生 《测绘学报》2002,31(Z1):7-11
概述现代大地测量参考系统的定义及不同参考系统之间的关系.主要讨论我国当代大地测量界常使用的3种用以表示几何位置的参考系统1980年国家大地坐标系、全球大地测量系统 1984 (WGS 84)、国际地球参考系统(ITRS),和一种用以表示物理位置,高程的参考系统1985年国家高程基准.并讨论大地测量中框架和基准的概念.  相似文献   

7.
Most of the space-geodetic observation techniques can be used for modeling the distribution of free electrons in the Earth’s ionosphere. By combining different techniques one can take advantage of their different spatial and temporal distributions as well as their different observation characteristics and sensitivities concerning ionospheric parameter estimation. The present publication introduces a procedure for multi-dimensional ionospheric modeling. The model consists of a given reference part and an unknown correction part expanded in terms of B-spline functions. This approach is used to compute regional models of Vertical Total Electron Content (VTEC) based on the International Reference Ionosphere (IRI 2007) and GPS observations from terrestrial Global Navigation Satellite System (GNSS) reference stations, radio occultation data from Low Earth Orbiters (LEOs), dual-frequency radar altimetry measurements, and data obtained by Very Long Baseline Interferometry (VLBI). The approach overcomes deficiencies in the climatological IRI model and reaches the same level of accuracy than GNSS-based VTEC maps from IGS. In areas without GNSS observations (e.g., over the oceans) radio occultations and altimetry provide valuable measurements and further improve the VTEC maps. Moreover, the approach supplies information on the offsets between different observation techniques as well as on their different sensitivity for ionosphere modeling. Altogether, the present procedure helps to derive improved ionospheric corrections (e.g., for one-frequency radar altimeters) and at the same time it improves our knowledge on the Earth’s ionosphere.  相似文献   

8.
基于IERS 2003规范的坐标系转换实现及其方案应用   总被引:1,自引:0,他引:1  
张云飞  郑勇  苏牡丹  吴富梅 《测绘科学》2005,30(6):95-96,112
主要介绍了IERS2003规范中国际地球参考系(ITRS)到地球质心天球参考系(GCRS)的转换过程,以及与IAU2000决议一致的常规转换公式,并详细分析了以IERS计算程序为工具、“基于CEO”[注]和“基于春分点”的ITRS向GCRS转换的两种等价方案和相应的三种应用方法,最后对新坐标系转换模型的应用进行了探讨。  相似文献   

9.
D. Gambis 《Journal of Geodesy》2004,78(4-5):295-303
Earth orientation parameters (EOPs) provide the transformation between the International Terrestrial Reference Frame (ITRF) and the International Celestial Reference Frame (ICRF). The different EOP series computed at the Earth Orientation Centre at the Paris Observatory are obtained from the combination of individual EOP series derived from the various space-geodetic techniques. These individual EOP series contain systematic errors, generally limited to biases and drifts, which introduce inconsistencies between EOPs and the terrestrial and celestial frames. The objectives of this paper are first to present the various combined EOP solutions made available at the EOP Centre for the different users, and second to present analyses concerning the long-term consistency of the EOP system with respect to both terrestrial and celestial reference frames. It appears that the present accuracy in the EOP combined IERS C04 series, which is at the level of 200 as for pole components and 20 s for UT1, does not match its internal precision, respectively 100 as and 5 s, because of propagation errors in the realization of the two reference frames. Rigorous combination methods based on a simultaneous estimation of station coordinates and EOPs, which are now being implemented within the International Earth Rotation Service (IERS), are likely to solve this problem in the future.  相似文献   

10.
The empirical model GPT (Global Pressure and Temperature), which is based on spherical harmonics up to degree and order nine, provides pressure and temperature at any site in the vicinity of the Earth’s surface. It can be used for geodetic applications such as the determination of a priori hydrostatic zenith delays, reference pressure values for atmospheric loading, or thermal deformation of Very Long Baseline Interferometry (VLBI) radio telescopes. Input parameters of GPT are the station coordinates and the day of the year, thus also allowing one to model the annual variations of the parameters. As an improvement compared with previous models, it reproduces the large pressure anomaly over Antarctica, which can cause station height errors in the analysis of space-geodetic data of up to 1 cm if not considered properly in troposphere modelling. First tests at selected geodetic observing stations show that the pressure biases considerably decrease when using GPT instead of the very simple approaches applied to various Global Navigation Satellite Systems (GNSS) software packages so far. GPT also provides an appropriate model for the annual variability of global temperature. Electronic supplementary material The online version of this article (doi: contains supplementary material, which is available to authorized users.  相似文献   

11.
2000中国大地坐标系:中国大陆速度场   总被引:2,自引:0,他引:2  
中国大地坐标系的定义,与国际地球参考系的定义一致。它的实现分两步完成:第一步,通过中国地壳运动观测网络(简称"网络")、全国GPS一、二级网、国家GPS A、B级网和地壳运动监测网等在ITRF97框架内进行联合平差得到约2 600个GPS大地点在历元2000.0的一致坐标;第二步,通过处理"网络"的10年观测数据得到该网络1 070个站的速度,并进而用这些站的速度内插出其余约1 500个非‘网络’点的速度。本文致力于实现中国大地坐标系的第二步,即研究中国大陆速度场的确定,给出了中国大陆速度场的结果,提出了应用速度场的4种方法,即全局欧拉矢量法、局域欧拉矢量法、格网平均值法和块体欧拉矢量法,并从速度精度和使用方便角度分析比较各个方法的优缺点。附录中给出中国大陆3°×3°格网速度平均值,以备用户查用。  相似文献   

12.
The CONT02 campaign is of great interest for studies combining very long baseline interferometry (VLBI) with other space-geodetic techniques, because of the continuously available VLBI observations over 2 weeks in October 2002 from a homogeneous network. Especially, the combination with the Global Positioning System (GPS) offers a broad spectrum of common parameters. We combined station coordinates, Earth orientation parameters (EOPs) and troposphere parameters consistently in one solution using technique- specific datum-free normal equation systems. In this paper, we focus on the analyses concerning the EOPs, whereas the comparison and combination of the troposphere parameters and station coordinates are covered in a companion paper in Journal of Geodesy. In order to demonstrate the potential of the VLBI and GPS space-geodetic techniques, we chose a sub-daily resolution for polar motion (PM) and universal time (UT). A consequence of this solution set-up is the presence of a one-to-one correlation between the nutation angles and a retrograde diurnal signal in PM. The Bernese GPS Software used for the combination provides a constraining approach to handle this singularity. Simulation studies involving both nutation offsets and rates helped to get a deeper understanding of this singularity. With a rigorous combination of UT1–UTC and length of day (LOD) from VLBI and GPS, we showed that such a combination works very well and does not suffer from the systematic effects present in the GPS-derived LOD values. By means of wavelet analyses and the formal errors of the estimates, we explain this important result. The same holds for the combination of nutation offsets and rates. The local geodetic ties between GPS and VLBI antennas play an essential role within the inter-technique combination. Several studies already revealed non-negligible discrepancies between the terrestrial measurements and the space-geodetic solutions. We demonstrate to what extent these discrepancies propagate into the combined EOP solution.  相似文献   

13.
The North American datum of 1983: Project methodology and execution   总被引:1,自引:0,他引:1  
A new adjustment of the geodetic control networks in North America has been completed, resulting in a new continental datum—the North American Datum of 1983 (NAD 83). The establishment ofNAD 83 was the result of an international project involving the National Geodetic Survey of the United States, the Geodetic Survey of Canada, and the Danish Geodetic Institute (responsible for surveying in Greenland). The geodetic data in Mexico and Central America were collected by the Inter American Geodetic Survey and validated by the Defense Mapping Agency Hydrographic/Topographic Center. The fundamental task ofNAD 83 was a simultaneous least squares adjustment involving 266,436 stations in the United States, Canada, Mexico, and Central America. The networks in Greenland, Hawaii, and the Caribbean islands were connected to the datum through Doppler satellite and Very Long Baseline Interferometry (VLBI) observations. The computations were performed with respect to the ellipsoid of the Geodetic Reference System of 1980. The ellipsoid is positioned in such a way as to be geocentric, and its axes are oriented by the Bureau International de l'Heure Terrestrial System of 1984. The mathematical model for theNAD readjustment was the height-controlled three-dimensional system. The least squares adjustment involved 1,785,772 observations and 928,735 unknowns. The formation and solution of the normal equations were carried out according to the Helmert block method. [Authors' note:This article is a condensation of the final report of the NAD 83 project. The full report (Schwarz,1989) contains a more complete discussion of all the topics.]  相似文献   

14.
In October 2002, 15 continuous days of Very Long Baseline Interferometry (VLBI) data were observed in the Continuous VLBI 2002 (CONT02) campaign. All eight radio telescopes involved in CONT02 were co-located with at least one other space-geodetic technique, and three of them also with a Water Vapor Radiometer (WVR). The goal of this paper is to compare the tropospheric zenith delays observed during CONT02 by VLBI, Global Positioning System (GPS), Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and WVR and to compare them also with operational pressure level data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the tropospheric zenith delays from VLBI and GPS are in good agreement at the 3–7 mm level. However, while only small biases can be found for most of the stations, at Kokee Park (Hawaii, USA) and Westford (Massachusetts, USA) the zenith delays derived by GPS are larger by more than 5 mm than those from VLBI. At three of the four DORIS stations, there is also a fairly good agreement with GPS and VLBI (about 10 mm), but at Kokee Park the agreement is only at about 30 mm standard deviation, probably due to the much older installation and type of DORIS equipment. This comparison also allows testing of different DORIS analysis strategies with respect to their real impact on the precision of the derived tropospheric parameters. Ground truth information about the zenith delays can also be obtained from the ECMWF numerical weather model and at three sites using WVR measurements, allowing for comparisons with results from the space-geodetic techniques. While there is a good agreement (with some problems mentioned above about DORIS) among the space-geodetic techniques, the comparison with WVR and ECMWF is at a lower accuracy level. The complete CONT02 data set is sufficient to derive a good estimate of the actual precision and accuracy of each geodetic technique for applications in meteorology.  相似文献   

15.
The conventional international origin (CIO), established from observations made a century ago, is not directly related to observations by modern space-geodetic techniques. Both the greater precision of these techniques and improved knowledge of the structure of the Earth justify the need for a new CIO. We analyze recent polar motion time-series (VLBI, SLR, and GPS) to test estimators that might be used to establish such a new conventional origin. This new origin would be defined as the barycenter of the motion of the pole for a specific epoch. Consistency among the series examined is of the order of 2 milli-arc-seconds. A drift model can be employed in the analysis of specific series to establish an origin as the barycenter at a specific epoch, rather than the midpoint of the series. As an example, we estimate a “Conventional International Reference Origin” for the year 2000.0, using polar motion series that began in 1984.  相似文献   

16.
Earth orientation parameters (EOPs) provide a link between the International Celestial Reference Frame (ICRF) and the International Terrestrial Reference Frame (ITRF). Natural geodynamic processes, such as earthquakes, can cause the motion of stations to become discontinuous and/or non-linear, thereby corrupting the EOP estimates if the sites are assumed to move linearly. The VLBI antenna at the Gilcreek Geophysical Observatory has undergone non-linear, post-seismic motion as a result of the Mw=7.9 Denali earthquake in November 2002, yet some VLBI analysts have adopted co-seismic offsets and a linear velocity model to represent the motion of the site after the earthquake. Ignoring the effects of the Denali earthquake leads to error on the order of 300–600 μas for the EOP, while modelling the post-seismic motion of Gilcreek with a linear velocity generates errors of 20–50 μas. Only by modelling the site motion with a non-linear function is the same level of accuracy of EOP estimates maintained. The effect of post-seismic motion on EOP estimates derived from the International VLBI Service IVS-R1 and IVS-R4 networks are not the same, although changes in network geometries and equipment improvements have probably affected the estimates more significantly than the earthquake-induced deformation at Gilcreek.  相似文献   

17.
为实现中国和尼泊尔共同宣布珠峰高程,我国于2019—2020年开展了珠峰高程测量工作,并于2020年5月27日完成峰顶测量。首次在珠峰北侧区域实施航空重力测量、开展峰顶地面重力测量,首次联合航空和地面重力等数据确定了基于国际高程参考系统(international height reference system,IHRS)的珠峰区域重力似大地水准面模型和峰顶大地水准面差距。此次珠峰测量,各种先进测量装备尤其是国产测量仪器全面担纲,通过多种技术手段相互验证和严密检核计算,确保了珠峰高程测量成果的精度和可靠性。最后,中尼双方合作开展数据处理,共同确定珠峰峰顶雪面正高(海拔高)为8848.86 m。  相似文献   

18.
We examine the contribution of the Doppler Orbit determination and Radiopositioning Integrated by Satellite (DORIS) technique to the International Terrestrial Reference Frame (ITRF2005) by evaluating the quality of the submitted solutions as well as that of the frame parameters, especially the origin and the scale. Unlike the previous versions of the ITRF, ITRF2005 is constructed with input data in the form of time-series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth orientation parameters (EOPs), including full variance–covariance information. Analysis of the DORIS station positions’ time-series indicates an internal precision reaching 15 mm or better, at a weekly sampling. A cumulative solution using 12 years of weekly time-series was obtained and compared to a similar International GNSS Service (IGS) GPS solution (at 37 co-located sites) yielding a weighted root mean scatter (WRMS) of the order of 8 mm in position (at the epoch of minimum variance) and about 2.5 mm/year in velocity. The quality of this cumulative solution resulting from the combination of two individual DORIS solutions is better than any individual solution. A quality assessment of polar motion embedded in the contributed DORIS solutions is performed by comparison with the results of other space-geodetic techniques and in particular GPS. The inferred WRMS of polar motion varies significantly from one DORIS solution to another and is between 0.5 and 2 mas, depending on the strategy used and in particular estimating or not polar motion rate by the analysis centers. This particular aspect certainly needs more investigation by the DORIS Analysis Centers.  相似文献   

19.
本文以太阳系质心参考系为基础推导了VLBI时延和引力延迟的后牛顿表达式;讨论了各天体对VLBI时延的影响量级及其作用范围;并根据地心参考系与太阳系质心参考系的坐标转换关系,给出了地心参考系中的VLBI观测模型。建议采用(25)式和(16)式作为VLBI时延和引力延迟改正的计算公式。  相似文献   

20.
 Five separate polar motion series are examined in order to understand what portion of their variations at periods exceeding several years represents true polar motion. The data since the development of space-geodetic techniques (by themselves insufficient for study of long-period motion), and a variety of historical astrometric data sets, allow the following tentative conclusions: retrograde long-period polar motion below about −0.2 cpy (cycles per year) in pre-space-geodetic data (pre-1976) is dominantly noise. For 1976–1992, there is poor agreement between space-geodetic and astrometric series over the range −0.2 to +0.2 cpy, demonstrating that classical astrometry lacked the precision to monitor polar motion in this frequency range. It is concluded that all the pre-1976 astrometric polar motion data are likely to be dominated by noise at periods exceeding about 10 years. The exception to this is possibly a linear trend found in some astrometric and space geodetic series. At frequencies above prograde +0.2 cpy (periods shorter than about 5 years), historical astrometric data may be of sufficient quality for comparisons with geophysical excitation time series. Even in the era of space geodesy, significant differences are found in long-period variations in published polar motion time series. Received: 27 March 2001 / Accepted: 15 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号