首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
在分析基于软件无线电GPS接收机结构的基础上,在基于PC软件接收机信号处理系统上采用模拟的数字中频信号,对软件接收机信号捕获、跟踪算法进行了分析和验证。信号捕获阶段给出了基于快速傅利叶变换FFT的快速搜索原理和结果,并采用跟踪阶段Q支路信号的统计特性分析了捕获门限和误警概率的关系,给出了一种捕获门限的优化方法;跟踪阶段对系统采用的数字锁相环(PLL)进行了分析,并对I/Q解调原理进行了解析和验证。  相似文献   

2.
在分析基于软件无线电GPS接收机结构的基础上,在基于PC软件接收机信号处理系统上采用模拟的数字中频信号,对软件接收机信号捕获、跟踪算法进行了分析和验证.信号捕获阶段给出了基于快速傅利叶变换FFT的快速搜索原理和结果,并采用跟踪阶段Q支路信号的统计特性分析了捕获门限和误警概率的关系,给出了一种捕获门限的优化方法;跟踪阶段对系统采用的数字锁相环(PLL)进行了分析,并对I/Q解调原理进行了解析和验证.  相似文献   

3.
一种有效的GNSS接收机载噪比估计方法   总被引:1,自引:0,他引:1  
提出了一种I支路功率方差比方法(I branch power variance ratio,IBPVR),并详细推导了另外3种载噪比估计方法(NWPR、MM、SNV),比较了这4种方法在强信号和弱信号情况下的跟踪性能。实验结果显示,在载噪比超过50dBHz时,NWPR方法与SNV方法并未出现饱和现象,SNV方法在弱信号情况下会产生估计偏差,NWPR与IBPVR方法的估计性能比较好。  相似文献   

4.
论电离层对GPS定位的影响   总被引:13,自引:2,他引:11  
电离层是GPS定位的主要误差源。本文论述电离层的特征和折射系数,以及电离层的下列影响:电离层码群延、电离层载波相位超前、电离层多普勒频移、振幅闪烁、电离层相位闪烁效应、磁暴对GPS定位测量的影响、电离层对差分GPS的影响和GPS接收机的电离层改正。  相似文献   

5.
电离层闪烁作为北极区域频发的一种天文灾害,会影响全球导航卫星系统(GNSS)时空服务,需对其进行有效的监测.监测电离层闪烁通常需要高采样频率(50 Hz)的电离层闪烁接收机,但其分布有限,难以提供较大区域(如北极区域)的全面监测.为此本文以1 Hz GNSS观测数据为基础,详细研究了利用大地测量趋势分离、精密单点定位和小波变换等技术提取载波相位观测值中电离层闪烁信号的相关经验参数和方法,构建了可用于监测电离层闪烁的相位闪烁因子,并利用加拿大高纬度北极电离层闪烁监测网络(CHAIN)提供的11个测站188 d的观测数据对其有效性和准确性进行了验证.结果表明,与常用的ROTI因子相比,本文所提出的闪烁因子与ROTI均能有效地探测到电离层闪烁的发生,但是本文提出的闪烁因子与电离层闪烁接收机直接给出的相位闪烁因子具有更好的相关性,尤其是在有强电离层闪烁发生的时段,这说明该闪烁因子具有更为优良的电离层闪烁监测能力.  相似文献   

6.
针对高动态环境会使接收机接收信号载频上产生很大的多普勒频移及其变化率,普通的GPS载波跟踪环无法保证可靠的跟踪等问题,通过综合分析传统的二阶叉积自动频率控制环(CPAFC)辅助三阶锁相环(PLL)的高动态载波跟踪环路,以及卡尔曼滤波器在动态跟踪中的优势与劣势,该文设计了一种基于卡尔曼滤波的二阶CPAFC辅助三阶PLL的GPS高动态载波跟踪环路。通过仿真分析证明,新的环路能更好地适应动态性,整体跟踪性能更好;并且在信噪比较低的情况下,环路优势更明显。  相似文献   

7.
设计与实现了一种基于GNSS技术的电离层闪烁实时测量与显示系统,该系统利用GNSS实时观测的原始幅度数据和相位数据。在研究电离层闪烁测量原理的基础上,利用C#语言实现对监测时段内GNSS信号的幅度闪烁和相位闪烁指数的实时监测分析,并且系统自动保存原始观测数据,可用于后期对电离层闪烁的大尺度详细分析。  相似文献   

8.
针对轨道器雷达在对火星浅层地表探测时,受火星电离层的影响信号方位向相位闪烁问题,该文对HF频段相位误差补偿方法进行系统研究,面向孤立强散射点存在的雷达成像场景,提出了利用Epstein函数的相位梯度自聚焦波形拟合算法(WF-PGA)。同时针对信号方位向波形畸变和非对称性,引入Epstein函数对归一化幅度进行偏态曲线拟合,并采用动态窗宽来保证算法的自适应性,最终达到对雷达信号闪烁效应的抑制作用。通过对仿真数据进行算法实验,结果表明,该算法能有效提升相位误差重建精度,提高对轨道器雷达闪烁效应的抑制效果。  相似文献   

9.
电离层闪烁造成GPS接收机测距误差增大、以致强闪烁条件下的频繁周跳和卫星信号失锁,集成闪烁仿真功能的GPS信号模拟器能够为接收机抗闪烁算法研究和性能测试提供必要的信号源。首先设计了基于AJ-Stanford模型和Cornell模型的电离层闪烁仿真软件,可以灵活配置闪烁时间、数据更新周期以及各模型参数,从而得到闪烁影响下的GPS信号幅度衰落及相位波动序列;然后开发了集成电离层闪烁仿真功能的数字中频GPS信号模拟器,该模拟器作为抗闪烁研究平台工具,可以灵活调整闪烁卫星号、模型及相关参数、开始时间和持续时间;其设计正确性通过实验室自研的软件GPS接收机得到了验证。  相似文献   

10.
针对高动态场景,单独的码环路很难实现跟踪,由于高动态载波跟踪的算法很成熟,通常应用载波跟踪结果对码环路进行辅助,针对窄体制信号,这种方法可以帮助消除码环的动态误差,但对宽体制信号来说,辅助力度减小。从高动态宽带信号码跟踪误差门限以及跟踪精度入手,分析了单独码跟踪算法的易失锁性,理论和仿真验证应用高动态载波跟踪结果辅助码跟踪算法的有效性,且具有高的跟踪精度。这为导航接收机的跟踪算法提供了理论依据。  相似文献   

11.
Strong equatorial scintillation is often characterized by simultaneous fast phase changes and deep amplitude fading. The combined effect poses a challenge for GNSS receiver carrier tracking performance. One of the consequences of the strong scintillation is increased navigation message data bit decoding error. Understanding the rate of the data bit decoding error under equatorial scintillation is essential for high accuracy and high integrity applications. We present the statistical relationship between the data bit decoding error occurrences and the intensity of amplitude scintillation based on the processing of intermediate frequency GPS scintillation data collected on Ascension Island in March 2013. A third-order phase lock loop (PLL) is implemented to process the data and to access the data bit error typically expected in conventional receivers. A Kalman filter-based PLL is also used to process the same data to demonstrate that the data bit decoding error can be reduced through advanced carrier tracking designs.  相似文献   

12.
Ionospheric scintillations are caused by time- varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between ~50°N and ~80°N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sj{\sigma_{\varphi}} represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise ‘equal weights’ model. For pseudorange processing, relative weights were com- puted, so that a ‘scintillation-mitigated’ solution could be performed and compared to the (non-mitigated) ‘equal weights’ solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.  相似文献   

13.
Methodology for comparing two carrier phase tracking techniques   总被引:1,自引:0,他引:1  
The carrier phase tracking loop is the primary focus of the current work. In particular, two carrier phase tracking techniques are compared, the standard phase tracking loop, i.e., the phase lock loop (PLL), and the extended Kalman filter (EKF) tracking loop. In order to compare these two different techniques and taking into consideration the different models adopted in each, it is important to bring them to one common ground. In order to accomplish this, the equivalent PLL for a given EKF has to be determined in terms of steady-state response to both thermal noise and signal dynamics. A novel method for experimentally calculating the equivalent bandwidth of the EKF is presented and used to evaluate the performance of the equivalent PLL. Results are shown for both the L1 and L5 signals. Even though the two loops are designed to track equivalent dynamics and to have equivalent carrier phase standard deviations, the EKF outperforms the equivalent PLL in terms of both the transient response and sensitivity.  相似文献   

14.
Results from processing FORMOSAT-3/COSMIC radio occultations (RO) with the new GPS L2C signal acquired both in phase locked loop (PLL) and open loop (OL) modes are presented. Analysis of L2P, L2C, and L1CA signals acquired in PLL mode shows that in the presence of strong ionospheric scintillation not only L2P tracking, but also L1CA tracking often fails, while L2C tracking is most stable. The use of L2C improves current RO processing in the neutral atmosphere mainly by increasing the number of processed occultations (due to significant reduction in the number of L2 tracking failures) and marginally by a reduction in noise in statistics. The latter is due to the combination of reduced L2C noise (compared to L2P) and increased L1CA noise in those occultations where L2P would have failed. This result suggests application of OL tracking for L1CA and L2C signals throughout an entire occultation to optimally acquire RO data. Two methods of concurrent processing of L1CA and L2C RO signals are considered. Based on testing of individual occultations, these methods allow: (1) reduction in uncertainty of bending angles retrieved by wave optics in the lower troposphere and (2) reduction in small-scale residual errors of the ionospheric correction in the stratosphere.  相似文献   

15.
As GPS is modernizing, there are currently fourteen satellites transmitting L2C civil code and seven satellites transmitting L5 signal. While the GPS observables are subject to several sources of errors, the ionosphere is one of the largest error sources affecting GPS signals. Small irregularities in the electrons density along the GPS radio signal propagation path cause ionospheric scintillation that is characterized by rapid fluctuations in the signal amplitude and phase. The ionospheric scintillation effects are stronger in equatorial and high-latitude geomagnetic latitude regions and occur mainly due to equatorial anomaly and solar storms. Several researchers have analyzed the L2C signal quality since becoming available in December, 2005. We analyze the performance of L2C using GPS data from stations in the equatorial region of Brazil, which is subject of weak, moderate and strong ionospheric scintillation conditions. The GPS data were collected by Septentrio PolaRxS–PRO receivers as part of the CIGALA/CALIBRA network. The analysis was performed as a function of scintillations indexes S4 and Phi60, lock time (time interval in seconds that the carrier phase is tracked continuously without cycle slips), multipath RMS and position variation of precise point positioning solutions. The analysis shows that L2C code solutions are less affected by multipath effects than that of P2 when data are collected under weak ionospheric scintillation effects. In terms of analysis of positions, the kinematic PPP results using L2C instead P2 codes show accuracy improvements up to 33 % in periods of weak or strong ionospheric scintillation. When combining phase and code collected under weak scintillation effects, the results by applying L2C against P2 provide improvement in accuracy up to 59 %. However, for data under strong scintillation effects, the use of L2C for PPP with code and phase does not provide improvements in the positioning accuracy.  相似文献   

16.
Small-scale irregularities in the background electron density of the ionosphere can cause rapid fluctuations in the amplitude and phase of radio signals passing through it. These rapid fluctuations are known as scintillation and can cause a Global Positioning System (GPS) receiver to lose lock on a signal. This could compromise the integrity of a safety of life system based on GPS, operating in auroral regions. In this paper, the relationship between the loss of lock on GPS signals and ionospheric scintillation in auroral regions is explored. The period from 8 to 14 November 2004 is selected for this study, as it includes both geomagnetically quiet and disturbed conditions. Phase and amplitude scintillation are measured by GPS receivers located at three sites in Northern Scandinavia, and correlated with losses of signal lock in receivers at varying distances from the scintillation receivers. Local multi-path effects are screened out by rejection of low-elevation data from the analysis. The results indicate that losses of lock are more closely related to rapid fluctuations in the phase rather than the amplitude of the received signal. This supports the idea, suggested by Humphreys et al. (2005) (performance of GPS carrier tracking loops during ionospheric scintillations. Proceedings Internationsl Ionospheric Effects Symposium 3–5 May 2005), that a wide loop bandwidth may be preferred for receivers operating at auroral latitudes. Evidence from the Imaging Riometer for Ionospheric Studies (IRIS) appears to suggest that, for this particular storm, precipitation of particles in the D/E regions may be the mechanism that drives the rapid phase fluctuations in the signal.
Robert W. MeggsEmail:
  相似文献   

17.
为满足组合导航系统在高动态环境下的性能要求,设计基于矢量跟踪的GNSS/SINS相干深组合导航方法。利用矢量跟踪环路将所有可视卫星的跟踪和导航解算融为一体,增强通道间的辅助;高动态对载波跟踪影响更大,在通道预滤波中将码环载波环分别用独立的滤波器处理,组合滤波中采用通道间差分降低滤波状态维数,提高计算效率。引入惯导的加速度辅助本地信号参数预测,较精确地测量卫星视线方向的加速度,减小接收机在高动态时段的剩余动态,提高本地信号参数的预测精度。基于矢量跟踪软件接收机搭建相干深组合仿真系统,实验表明该方法在高动态等环境下能提高信号跟踪性能,改善系统的精度、可靠性。   相似文献   

18.
裴军  胡正群  张杰 《测绘科学》2012,37(3):127-128,149
常规的二阶载波跟踪环路由于环路带宽的限制,无法满足接收机高动态条件下的环路跟踪,为了解决环路的高动态应力引起的噪声响应对环路带宽的要求,需要合并动态应力到误差跟踪控制信号才能满足高动态的性能要求。本文从载波跟踪二阶环路的结构入手,对利用外界速度辅助的三阶环路进行动态稳定性和稳定误差性能进行仿真计算和性能分析,结果表明这种有外界速度辅助的三阶载波锁相环路可以改善信号跟踪环路的动态应力性能。  相似文献   

19.
Compared with the traditional GPS L1 C/A BPSK-R(1) signal, wideband global navigation satellite system (GNSS) signals suffer more severe distortion due to ionospheric dispersion. Ionospheric dispersion inevitably introduces additional errors in pseudorange and carrier phase observations that cannot be readily eliminated by traditional methods. Researchers have reported power losses, waveform ripples, correlation peak asymmetries, and carrier phase shifts caused by ionospheric dispersion. We analyze the code tracking bias induced by ionospheric dispersion and propose an efficient all-pass filter to compensate the corresponding nonlinear group delay over the signal bandwidth. The filter is constructed in a cascaded biquad form based on the estimated total electron content (TEC). The effects of TEC accuracy, filter order, and fraction parameter on the filter fitting error are explored. Taking the AltBOC(15,10) signal as an example, we compare the time domain signal waveforms, correlation peaks, code tracking biases, and carrier phase biases with and without this all-pass filter and demonstrate that the proposed delay-equalization all-pass filter is a potential solution to ionospheric dispersion compensation and mitigation of observation biases for wideband GNSS signals.  相似文献   

20.
建立了导航接收机码跟踪延迟锁定环的数学模型,讨论了DP和EMLP鉴别器在不同信号、不同前端滤波器带宽的鉴别曲线特性,阐述了BOC调制模糊跟踪产生的原因。针对BOC调制信号的模糊跟踪问题,从BOC调制的机理出发,将BOC调制分成伪码和副栽波两部分分析,阐述了一种新的鉴别器设计。实验表明:新鉴别器设计,鉴别曲线线性跟踪区域斜率最高为9,可实现BOC调制的无模糊跟踪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号