首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
ASTER GDEM与SRTM3高程差异影响因素分析   总被引:3,自引:0,他引:3  
作为最新发布的全球地形数据,ASTER GDEM比目前常用的SRTM3数据有着更高的分辨率和更广的覆盖范围,对于相关地学分析具有重要意义。本文以华中地区为研究区域,对ASTER GDEM与SRTM3数据进行了比较,重点分析了坡度、坡向、地形起伏度、土地利用类型、植被覆盖度、生成ASTER GDEM栅格点高程数据所用的ASTER DEM影像数等因素对2种DEM数据高程差异的影响。结果表明,在研究区域内,ASTER GDEM高程比SRTM3高程平均低5.42 m,两种DEM数据高程差异的RMS值为16.90 m;ASTER GDEM与SRTM3之间的高程差异随着坡度、地形起伏度、植被覆盖度的增大而增大,而ASTER DEM影像数越大,高程差异越小;坡向、土地利用类型对高程差异也有影响。  相似文献   

2.
为探究ASTER GDEMV3、SRTM1 DEM和AW3D30 DEM 3种开源DEM数据的高程精度,本文以高精度ICESat-2 ATLAS测高数据为参考数据,利用GIS统计分析、误差相关分析及数理统计对DEM的高程精度进行对比评价。结果表明:①AW3D30的质量最稳定;SRTM1 DEM在平原精度最高;在高原山地精度由高到低依次为AW3D30 DEM、ASTER GDEMV3、SRTM1 DEM。②DEM数据高程精度受地表覆盖影响较大,且与地形因素密切相关,在相同地表覆盖的两个研究区中DEM数据高程精度表现情况不一致,SRTM在平原地表覆盖下精度表现最好,平均误差为3.15 m,AW3D30 DEM在山地地表覆盖下精度表现最好,平均误差为7.61 m。③坡度对DEM数据的高程精度影响较大,在两个研究区3种DEM数据的高程误差均随坡度的增加而增加;坡向对DEM数据的高程精度影响较小,未发现明显的规律。  相似文献   

3.
为全面了解航天飞机雷达测图计划(shuttle Radar topography mission,SRTM)高程数据的精度及误差特征,利用精度更高的ICESat/GLAS激光高度计数据(简称ICESat高度计数据)为参照数据,以具有多种地貌类型的中国青藏高原地区为实验区,采用双线性插值算法分析了SRTM在中国青藏高原地区的高程精度,以及SRTM高程数据与地形因子(坡度和坡向)间的关系。实验结果表明:在青藏高原地区,ICESat高度计数据与相对应的SRTM高程数据高度相关,相关系数高达0.999 8;SRTM的系统误差为2.36±16.48 m,中误差(RMSE)为16.65 m;当坡度低于25°时,SRTM高程数据精度随坡度增大而显著降低。此外,相对于ICESat高度计数据,SRTM在青藏高原地区N,NW和NE方向的测量值偏高,在S,SE和SW方向的测量值偏低。  相似文献   

4.
SRTM(1″)DEM在流域水文分析中的适用性研究   总被引:1,自引:0,他引:1  
高精度的数字高程模型(digital elevation model,DEM)数据是流域水文分析应用的基础。美国地质调查局新发布了全球高分辨率数字高程数据产品,其空间分辨率为1″(约为30 m)。为评价该数据在流域水文分析中的适用性,以鹤壁汤河流域为实验区,以机载LiDAR DEM数据为参考,统计了SRTM(1″)数据的高程误差,分析了坡度、坡向、地表覆盖等对误差的影响;在基于地形的水文分析中,统计分析了SRTM(1″)数据误差对地形湿度指数、坡度坡长因子以及汇流动力指数等地形指数计算的影响;最后选取流域汇水区面积、最长水流路径长度、形状系数、弯曲度系数等流域特征参数对两种DEM数据提取结果进行了对比。研究表明SRTM(1″)DEM数据具有较高的精度,原始数据均方根误差为5.98 m,在消除平面位移误差后减小为4.32 m。基于地形的水文分析表明SRTM DEM与LiDAR DEM计算结果具有一定的差异,地形湿度指数平均值略高,坡度坡长因子和汇流动力指数平均值偏低,离散度偏小,这与SRTM DEM在微地貌以及高坡度地形区存在失真相关。两种DEM数据提取流域特征参数差异较小。上述研究表明SRTM DEM(1″)数据在流域水文分析中具有较大的应用潜力。  相似文献   

5.
提出利用ICESAT卫星搭载的GLAS激光雷达数据进行SRTM数据的高程精度评价,选择青藏高原东北缘作为研究区,综合利用GIS空间分析方法,计算在不同高程分带和坡度分带上SRTM数据高程精度,并分析其变化规律。结果表明,ICESAT/GLAS与SRTM高程数据间存在明显的相关关系。该地区SRTM数据高程总体精度为5.3m,随着海拔升高,坡度的增大,高程精度呈降低的趋势。在祁连山高山区(4600m-4700m)误差达到12.3m,在40°-50°的坡度带上误差为18.9m,略高于SRTM的标称精度。  相似文献   

6.
对AW3D30的绝对高程精度,特别是在我国典型区域的绝对高程进行验证分析,对于后续该数据集的应用具有参考价值,对于我国自主的全球高精度DSM数据生产也有一定的借鉴意义。本文选取了我国4种典型区域,以SRTM、部分高精度野外控制点以及ICESat/GLAS为辅助参考数据,对AW3D30进行了精度验证。采用地理信息系统(GIS)空间统计分析方法选取平均误差、标准差、中误差等参数指标进行精度验证,同时,分析了坡度、地表覆盖等因素对精度的影响。结果表明:AW3D30的高程精度与坡度有很明显的相关性,坡度较大地区高程精度较差,但在坡度小于5°时其高程精度可达5.0 m,在坡度小于1°时高程精度可达到3.0 m。地表覆盖类型也会对精度造成一定的影响,其中,林地影响对精度的影响最明显,而人造地表的影响最小。  相似文献   

7.
数字高程模型派生因子很多,在地形分析方面有着独一无二的优势,其派生因子产生的数据也有着非常广泛的应用,本文从不同分辨率数字高程模型派生因子里面选取坡度、坡向、地表粗糙度3个方面进行对比分析,通过数据与趋势图表,研究发现随着分辨率的降低,对地形的描述粗糙增大,概括程度也变高,使得坡度梯度降低;坡向研究方面在平坦地区随分辨率粗略化,面积比例逐步减小,从整体来看,随分辨率的粗略化,除平坦地区外,各类坡向面积比例没有太大的变化;地表粗糙度的最大值随着分辨率的下降而逐步降低,并且在极大值之间的变化频率较小,粗糙度的均值随分辨率的降低而减小,但均值间的变化比较稳定。  相似文献   

8.
SRTM约束的无地面控制立体影像区域网平差   总被引:4,自引:2,他引:2  
周平  唐新明  曹宁  王霞  李国元  张恒 《测绘学报》2016,45(11):1318-1327
针对SRTM(shuttle radar topography mission)数据在平坦地形或局部区域的高程精度远远高于其标称精度的特点,研究设计了一种无地面控制条件下利用SRTM作为高程约束的立体区域网平差方法。通过构建一个较大范围区域网并匹配密集连接点,将SRTM作为连接点物方高程初值,并在平差解算过程中确保分布于地形平坦区域(根据经验,在该类区域SRTM精度较高)的连接点的物方高程严格趋近SRTM高程,最终实现大范围区域内影像高程精度的整体提升。通过以覆盖湖北省全境的资源三号卫星三线阵立体影像作为试验影像的试验验证表明,采用该平差方案,在无地面控制点条件下资源三号立体影像的高程中误差从7.2m提升到2.0m,其中地形平坦区域高程中误差1.44m,山地区域高程中误差3.0m,达到了我国1∶25 000比例尺测图应用的高程精度要求。  相似文献   

9.
温伯清  杨勤科  朱梦阳  庞国伟 《测绘科学》2019,44(7):156-163,170
针对1″SRTM数据和基于1∶50 000地形图生成的DEM在黄土侵蚀区对地表形态表达能力的差异性问题,提出了一套完整的评价分析指标体系。选取陕西黄土高原6大典型黄土地貌样区,从地形属性(高程、坡度、坡向、坡长)和地形特征(山顶点、流水线、流域边界)两大方面评估了两种数据对表达黄土侵蚀区的地形表达能力。结果表明:1″SRTM对地表形态的表达能力接近1∶50 000地形图所生成的DEM,但总体上还是1∶50 000地形图所生成的DEM对地表形态的表达比较好,尤其是在地形比较破碎的地区。本文为1″SRTM数据在部分区域替代地形图生成的Hc-DEM,并用于与地学相关领域的研究提供了重要依据。  相似文献   

10.
DEM网格尺寸对地形因子精度的影响分析   总被引:1,自引:0,他引:1  
毕晓玲  李小娟  胡卓玮  赖晗 《测绘科学》2012,37(6):150-152,188
本文以四川省为研究区,基于SRTM数据和GDEM数据,选取5种不同网格尺寸提取坡度、坡向、剖面曲率、平面曲率和地表粗糙度等地形因子,比较DEM网格尺寸变化对提取的地形因子计算结果的误差。研究表明,DEM网格尺寸的增大增加了DEM对地形信息的概括,提取的地形因子准确性降低;但是网格尺寸如果过小,会导致数据量快速增大,浪费大量时间和计算机资源。所以在生产实践中,应综合考虑多种因素选择适宜的网格尺寸。  相似文献   

11.
A reference digital elevation model (DEM), produced from contour lines digitization, from topographic maps at scale 1:250.000 is used in order to assess the vertical accuracy of the SRTM DTED level 1 in Crete Island in Southern Greece. The error image interpretation revealed three types of systematic errors: (a) stripping, (b) large voids and (c) those errors resulted from the mis-registration of the Shuttle Radar Topography Mission (SRTM) imagery to the local datum. Terrain was segmented to plane regions and sloping regions. Sloping regions were segmented to aspect regions (aspect being standardized to the eight geographic directions defined in a raster/grid image). Error statistics was computed for the study area as well as the individual terrain classes. Vertical accuracy was found to be terrain class dependent. Sloping regions present greater mean error than the plane ones. Statistical tests verified that the difference in mean error between aspect regions that slope in opposite geographic directions is statistically significant. The greater mean error is observed for SW, W and NW aspect regions. The additional finishing steps applied to the SRTM dataset were not sufficient enough for the systematic errors and the terrain class dependency of the error to be corrected. The observed root-mean-square error (RMSE) for the SRTM DTED-1 of Crete do not fulfil the 16 m RMSE specification for the SRTM mission while the USA national map accuracy standards for the scale 1:250.000 are satisfied.  相似文献   

12.
The Shuttle Radar Topography Mission (SRTM), the first relatively high spatial resolution near‐global digital elevation dataset, possesses great utility for a wide array of environmental applications worldwide. This article concerns the accuracy of SRTM in low‐relief areas with heterogeneous vegetation cover. Three questions were addressed about low‐relief SRTM topographic representation: to what extent are errors spatially autocorrelated, and how should this influence sample design? Is spatial resolution or production method more important for explaining elevation differences? How dominant is the association of vegetation cover with SRTM elevation error? Two low‐relief sites in Louisiana, USA, were analyzed to determine the nature and impact of SRTM error in such areas. Light detection and ranging (LiDAR) data were employed as reference, and SRTM elevations were contrasted with the US National Elevation Dataset (NED). Spatial autocorrelation of errors persisted hundreds of meters spatially in low‐relief topography; production method was more critical than spatial resolution, and elevation error due to vegetation canopy effects could actually dominate the SRTM representation of the landscape. Indeed, low‐lying, forested, riparian areas may be represented as substantially higher than surrounding agricultural areas, leading to an inverted terrain model.  相似文献   

13.
为了克服现有SRTM和ASTER各自缺陷,提升公共DEM精度,本文提出了一种顾及地形坡度的SRTM和ASTER加权融合方法。首先对两种DEM进行地理配准;然后计算不同坡度等级下SRTM和ASTER的高程误差,并得到DEM融合权重;最后采用加权平均法对SRTM和ASTER进行融合。高精度控制点的检验表明:融合后DEM精度有明显提高,相比于原始SRTM和ASTER高程误差,标准差分别降低了5.65 m和1.20 m。  相似文献   

14.
针对榆林东北部地区新石器时代的环境宜居性分布规律进行研究,通过SOFM神经网络模型对研究区聚落等级进行划分,结合地形高程、坡度、坡向、距水系距离、植被覆盖度等因子,构建指数模型。研究结果表明,研究区遗址大都分布在海拔1 000~1 200m、坡度3~9°、距水系距离为0~800m、坡向为阳坡以及植被覆盖度较好的区域,一级聚落均分布在古代环境宜居性较高的区域。与仅使用地形因子建立的指数模型相比,加入植被覆盖度和聚落等级因子的模型对不宜居的沙漠和遗址分布空白区域划分的宜居性等级低,对遗址分布密集的宜居区域划分的宜居性等级高,宜居性等级划分结果与各等级遗址密度分布的客观事实更为吻合,综合因子模型对区域宜居性等级划分更为精确。  相似文献   

15.
Digital elevation models (DEMs) are essential to various applications in topography, geomorphology, hydrology, and ecology. The Shuttle Radar Topographic Mission (SRTM) DEM data set is one of the most complete and most widely used DEM data sets; it provides accurate information on elevations over bare land areas. However, the accuracy of SRTM data over vegetated mountain areas is relatively low as a result of the high relief and the penetration limitation of the C-band used for obtaining global DEM products. The objective of this study is to assess the performance of SRTM DEMs and correct them over vegetated mountain areas with small-footprint airborne Light Detection and Ranging (Lidar) data, which can develop elevation products and vegetation products [e.g., vegetation height, Leaf Area Index (LAI)] of high accuracy. The assessing results show that SRTM elevations are systematically higher than those of the actual land surfaces over vegetated mountain areas. The mean difference between SRTM DEM and Lidar DEM increases with vegetation height, whereas the standard deviation of the difference increases with slope. To improve the accuracy of SRTM DEM over vegetated mountain areas, a regression model between the SRTM elevation bias and vegetation height, LAI, and slope was developed based on one control site. Without changing any coefficients, this model was proved to be applicable in all the nine study sites, which have various topography and vegetation conditions. The mean bias of the corrected SRTM DEM at the nine study sites using this model (absolute value) is 89% smaller than that of the original SRTM DEM, and the standard deviation of the corrected SRTM elevation bias is 11% smaller.  相似文献   

16.
Digital Elevation Model (DEM) is a quantitative representation of terrain and is important for Earth science and hydrological applications. DEM can be generated using photogrammetry, interferometry, ground and laser surveying and other techniques. Some of the DEMs such as ASTER, SRTM, and GTOPO 30 are freely available open source products. Each DEM contains intrinsic errors due to primary data acquisition technology and processing methodology in relation with a particular terrain and land cover type. The accuracy of these datasets is often unknown and is non-uniform within each dataset. In this study we evaluate open source DEMs (ASTER and SRTM) and their derived attributes using high postings Cartosat DEM and Survey of India (SOI) height information. It was found that representation of terrain characteristics is affected in the coarse postings DEM. The overall vertical accuracy shows RMS error of 12.62 m and 17.76 m for ASTER and SRTM DEM respectively, when compared with Cartosat DEM. The slope and drainage network delineation are also violated. The terrain morphology strongly influences the DEM accuracy. These results can be highly useful for researchers using such products in various modeling exercises.  相似文献   

17.
Digital Elevation Models (DEMs) contain topographic relief data that are vital for many geoscience applications. This study relies on the vertical accuracy of publicly available latest high-resolution (30?m) global DEMs over Cameroon. These models are (1) the ALOS World 3D-30?m (AW3D30), (2) the Shuttle Radar Topography Mission 1 Arc-Second C-Band Global DEM (SRTM 1) and (3) the Advanced Spaceborne Thermal Emission and Reflection Global DEM Version 2 (ASTER GDEM 2). After matching their coordinate systems and datums, the horizontal positional accuracy evaluation was carried out and it shows that geolocation errors significantly influence the vertical accuracy of global DEMs. After this, the three models are compared among them, in order to access random and systematic effects in the elevation data each of them contains. Further, heights from 555 GPS/leveling points distributed all over Cameroon are compared to each DEM, for their vertical accuracy determination. Traditional and robust statistical measures, normality test, outlier detection and removal were used to describe the vertical quality of the DEMs. The test of the normality rejected the hypothesis of normal distribution for all tested global DEMs. Overall vertical accuracies obtained for the three models after georeferencing and gross error removal in terms of Root Mean Square (RMS) and Normalized Median Absolute Deviation (NMAD) are: AW3D30 (13.06?m and 7.75?m), SRTM 1 (13.25?m and 7.41?m) and ASTER GDEM 2 (18.87?m and 13.30?m). Other accuracy measures (MED, 68.3% quantile, 95% quantile) supply some evidence of the good quality of AW3D30 over Cameroon. Further, the effect of land cover and slope on DEM vertical accuracy was also analyzed. All models have proved to be worse in the areas dominated by forests and shrubs areas. SRTM 1 and AW3D30 are more resilient to the effects of the scattering objects respectively in forests and cultivated areas. The dependency of DEMs accuracy on the terrain roughness is evident. In all slope intervals, AW3D30 is performing better than SRTM 1 and ASTER GDEM 2 over Cameroon. AW3D30 is more representative of the external topography over Cameroon in comparison with two others datasets and SRTM 1 can be a serious alternative to AW3D30 for a range of DEM applications in Cameroon.  相似文献   

18.
为了评价国产资源三号测绘卫星DSM数据精度,在顾及地貌类型的情况下,以涵盖平原、台地、丘陵等地貌的高海拔山区为研究案例,并以1∶1万实测地形图DEM为假定真值,以90m分辨率SRTM DEM为评价参照,从高程精度和地形描述精度两个方面,对15m分辨率ZY-3DSM进行精度评价分析。研究结果表明:ZY-3DSM高程精度优于SRTM DEM,前者高程中误差仅为后者的1/6;就地形描述精度来讲,ZY-3DSM与SRTM DEM相比,其地形描述精度更接近理论值,前者RMS Et实际值仅为理论值0.99倍,而后者的实际值却是理论值5.13倍。由此看来,ZY-3DSM数据精度整体上高于SRTM DEM。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号