首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The propagation of long-waves, such as tidal waves from the coastal oceam into shallow estuarine waters,often produces asymmetries of veolcity and water level in time series resulting in long-wave breaking.Tian (1994) studied the mechanism of long-wave breaking in an infinite channel with constant depth,considering nth power bottom friction. This study is for the case of a half infinite channel with bottomslope, taking linear bottom friction into account. The wave breaking time and wave breaking location areestimated and the criteria for long-wave breaking in this particular case are obtained. The results obtainedcan also be e asily applied to the case considering wind stress.  相似文献   

2.
The propagation of long-waves, such as tidal waves from the coastal ocean into shallow estuarine waters, often produces asymmetries of velocity and water level in time series resulting in long-wave breaking. Tian (1994) studied the mechanism of long-wave breaking in an infinite channel with constant depth, consideringnth power bottom friction. This study is for the case of a half infinite channel with bottom slope, taking linear bottom friction into account. The wave breaking time and wave breaking location are estimated and the criteria for long-wave breaking in this particular case are obtained. The results obtained can also be easily applied to the case considering wind stress.  相似文献   

3.
ImODUcrIONBreakingwavesaretheagentSformanyimPohantupperoceanproassesinvolvingtransferofhobontalmornentumfromwindwivestosurfaceimtS.AfaIniliarandspancularpropertyoflongwivespropagatinginaninfiniteorhaif4nfinitechannelwithbottomsl0peisthemeCanismofwavebrmking.Alltheusualtheories(srnallamPlitudeapproxthetionsofAiryandStokes,noTilinearshallowwitertheory,K0rteweg-DeVireSequattonsforsolitaryandcnoidalWhves)areessentiallyapproxirnations,validonlyWhenthefluidadetionissuffidenhysmallcomPatalto…  相似文献   

4.
5.
Longwave breaking is the agent for many important upper ocean layer processes including the trans-fer of horizontal momentum. In a previous study on the process of longwave breaking, only linear bot-tom friction was considered.In this paper, we discuss the longwave breaking phenomena in the moregeneral case of nth power bottom friction. Using the theory of blowup of solution,the criterion for thetime and location of the longwave breaking can be obtained.  相似文献   

6.
Longwave breaking is the agent for many important upper ocean layer processes including the transfer of horizontal momentum. In a previous study on the process of longwave breaking, only linear bottom friction was considered. In this paper, we discuss the longwave breaking phenomena in the more general case ofnth power bottom friction. Using the theory of blowup of solution, the criterion for the time and location of the longwave breaking can be obtained. Contribution No. 2559 from the Institute of Oceanology, Chinese Academy of Sciences. This project was supported by NSFC (No. 49376254).  相似文献   

7.
In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcritical hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a flat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.  相似文献   

8.
A COMBINED REFRACTION-DIFFRACTION-DISSIPATION MODEL OF WAVE PROPAGATION   总被引:7,自引:0,他引:7  
A numerical model based on the mild-slope equation of water wave propagation over complicated bathymetry,taking into account the combined effects of refraction,diffraction and dissipation due to wavebreaking is presented.Wave breaking is simulated by modifying the wave height probability density func-tion and the wave energy dissipation mechanism is parameterized according to that of the hydraulic jumpformulation.Solutions of the wave height,phase function,and the wave direction at every grid point areobtained by finite difference approximation of the governing equations,using Gauss-Seidel Iterative Method(GSIM)row by row.Its computational convenience allows it to be applied to large coast regions tostudy the wave transformation problem.Several case studies have been made and the results compare verywell with the experiment data and other model solutions.The capability and utility of the model forreal coast areas are illustrated by application to a shallow bay of northeast Australia.  相似文献   

9.
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model’s capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model’s breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.  相似文献   

10.
ImODUcnONThedeepequatorialoceanhasobvioussignilicantflowapparentlycarryinghacelsa1ongandacrosstheequator(WissCtal.,l985).RmtfloatmsurementSshoWedthattheflowishigh1yvariable(Richardsonetal.,l993).ThomPsonandKawase(l993)pro-posedthatthelargeinstantaneousandfloatvelocitiesasWellasthevariabilitysuggestthatthetracersignaIsreflCCtreCtificationoftimedependentmotionsandniinginsteadofrneanEulerianflow.TheresultSoftheirstudyonthegenerationofmeancurrentSbyperi-odicfordngintheequatorialoceaninasir…  相似文献   

11.
This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient. In this method, the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term, the surface current and the bottom friction coefficient are defined as the analytical variables, and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient. This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves. Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information. The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments. The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.  相似文献   

12.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a set of two-time-level semi-implicit finite difference equations. The major terms in-cluding the local acceleration, sea-surface slope, Coriolis force and the bottom friction are approxi-mated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are app-roximated with the Leith scheme. The difference equations are split into two sets of alternating directionimplicit quations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, andone west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coastof Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summerand winter monso  相似文献   

13.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas, vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves are approximated by a set of two-time-level semi-implicit fimite difference equations. The major terms including the local acoeleration, sea-surface slope, Coriolis force and the bottom friction are approximated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are approximated with the Leith scheme. The difference equations are split into two sets of alternating direction implicit equations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, and one west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coast of Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summer and winter monsoons generate several eddies in the South China Sea. Project supported by the National Natural Science Foundation of China.  相似文献   

14.
Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave reflection is an important process that affects the determination of the wave height. Many of the design formulas presented in the literature depend on empirical studies based on the structures tested. In this study, the hydrodynamic conditions in front of a vertical wall with an overhanging horizontal cantilever slab with a foreshore slope of 1/20 are determined experimentally under regular wave conditions to assess the applicability of the formulas of Goda (2000) for predicting the nearshore wave height and breaker index equation (Goda, 2010). The selection of wave measurements used to determine the design wave height, the reflection coefficients, and wave breaking is also analyzed, and the reflection equations are derived from the dataset covering different breaker types. Small-scale tests show that the incident wave height is a good representative of the design wave height and that the values predicted by Goda are in good agreement with actual measurements. However, the predicted Hmax values are overestimated. In addition, the inception of the wave breaking point is postponed because of the reflection and/or turbulence left over from preceding waves, which is an effect of the vertical wall. At higher water levels, the effect of the vertical wall on the inception point becomes more significant.  相似文献   

15.
A VOF-based numerical model for breaking waves in surf zone   总被引:2,自引:0,他引:2  
This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and (he k-s equations for turbulence kinetic energy k and turbulence dissipation rate e. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.  相似文献   

16.
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking i...  相似文献   

17.
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-β method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.  相似文献   

18.
A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.  相似文献   

19.
20.
Wave breaking on turbulent energy budget in the ocean surface mixed layer   总被引:2,自引:0,他引:2  
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号