首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 142 毫秒
1.
Primary productivity of ecosystem is important indicator about ecological assessment. Remote sensing technology has been used to monitor net primary productivity (NPP) of ecological system for several years. In this paper, the remotely sensed NPP simulation model of alpine vegetation in Qinghai Province of Tibet Plateau was set up based on the theory of light use efficiency. Firstly a new approach based on mixed pixels and Support Vector Machine (SVM) algorithm were used to correct simulated NPP values derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Finally, spatial distribution and monthly variation characteristics of NPP in Qinghai Province detail. The result showed in 2006 were analyzed in that NPP of vegetation in Qinghai Province in 2006 ranged from o to 422 gC/m2/a and the average NPP was 151 gC/m2/a. NPP gradually increased from northwest to southeast. NPP of different vegetation types were obviously different. The average NPP of broad-leaved forest was the largest (314 gC/m2/a), and sparse shrub was the smallest (101 gC/m2/a). NPP in Qinghai Province significantly changed with seasonal variation. The accumulation of NPP was primarily in the period (from April to September) with better moist and heat conditions. In July, the average NPP of vegetation reached the maximum value (43 gC/m2). In our model, the advantage of traditional LUE models was adopted, and our study fully considered typicalcharacteristics of alpine vegetation light use efficiency and environmental factors in the study area. Alpine vegetation is the most important ecological resource of Tibet Plateau, exactly monitoring its NPP value by remote sensing is an effective protection measure.  相似文献   

2.
In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.  相似文献   

3.
Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.  相似文献   

4.
This study examined the temporal variation of the Normalized Difference Vegetation Index (NDVI) and its relationship with climatic factors in the Changbai Mountain Natural Reserve (CMNR) during 2000-2009.The results showed as follows.The average NDVI values increased at a rate of 0.0024 year-1.The increase rate differed with vegetation types,such as 0.0034 year-1 for forest and 0.0017 year-1 for tundra.Trend analyses revealed a consistent NDVI increase at the start and end of the growing season but little variation or decrease observed in July during the study period.The NDVI in CMNR showed a stronger correlation with temperature than with precipitation,especially in spring and autumn.A stronger correlation was observed between NDVI and temperature in the tundra zone (2,000-2,600m) than in the coniferous forest (1,100-1,700m) and Korean pine-broadleaved mixed forest (700-1,100m) zones.The results indicate that vegetation at higher elevations is more sensitive to temperature change.NDVI variation had a strong correlation with temperature change (r=0.7311,p<0.01) but less significant correlation with precipitation change.The result indicates that temperature can serve as a main indicator of vegetation sensitivity in the CMNR.  相似文献   

5.
It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogenic effects.  相似文献   

6.
How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved.  相似文献   

7.
It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.  相似文献   

8.
Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment especially within built-up areas.In this study,ArcGIS 10,ENVI 4.5,and Visual FoxPro 6.0 were used to analyze the human impacts on vegetation in the built-up areas of 656Chinese cities from 1992 to 2010.Firstly,an existing algorithm was refined to extract the boundaries of the built-up areas based on the Defense Meteorological Satellite Program Operational Linescan System(DMSP_OLS)nighttime light data.This improved algorithm has the advantages of high accuracy and speed.Secondly,a mathematical model(Human impacts(HI))was constructed to measure the impacts of human factors on vegetation during rapid urbanization based on Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI.HI values greater than zero indicate relatively beneficial effects while values less than zero indicate proportionally adverse effects.The results were analyzed from four aspects:the size of cities(metropolises,large cities,medium-sized cities,and small cities),large regions(the eastern,central,western,and northeastern China),administrative divisions of China(provinces,autonomous regions,and municipalities)and vegetation zones(humid and semi-humid forest zone,semi-arid steppe zone,and arid desert zone).Finally,we discussed how human factors impacted on vegetation changes in the built-up areas.We found that urban planning policies and developmental stages impacted on vegetation changes in the built-up areas.The negative human impacts followed an inverted′U′shape,first rising and then falling with increase of urban scales.China′s national policies,social and economic development affected vegetation changes in the built-up areas.The findings can provide a scientific basis for municipal planning departments,a decision-making reference for government,and scientific guidance for sustainable development in China.  相似文献   

9.
The Hengduan mountain area,located in the upper reaches of the Yangtze River of China,is an important ecological barrier that significantly impacts the climate and ecological environment of the surrounding region and western China as a whole.This paper introduces the gravity center model used to analyze the spatial-temporal variation patterns of vegetation Net Primary Productivity(NPP)from 2000 to 2015,which were determined by the use of MOD17 A3 NPP products.Additionally,the dominant driving factors of the spatial–temporal changes of vegetation NPP of the Hengduan Mountain area were quantitatively determined with a geographical detector over 2000-2015.The results revealed that:(1)From 2000 to 2015,there was an increasing trend of vegetation NPP in the Hengduan mountain area.Throughout the whole study region,the vegetation NPP with a mean value of 611.37 gC·m-2·a-1 indicated a decreasing trend from southeast to northwest in terms of spatial distribution.(2)The gravity centers of vegetation NPP in 2000-2015 were mainly concentrated in Zhongdian County.During the study period,the gravity center of vegetation NPP moved northward,which indicated that the increment and increasing rate of vegetation NPP in the northern parts were greater than that of the southern areas.(3)The vegetation NPP showed a moderately positive correlation with temperature,accumulated temperature(>10℃),and sunshine,while there was an overall negative relationship between NPP and precipitation.(4)The dominant factors and interactive dominant factors changed in different subregions over different segments of the study period.The dominant factors of most sub-regions in Hengduan mountain were natural factors,and the climate change factors played an increasingly greater role over the 16 years of the study period.  相似文献   

10.
A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges. Various climatic factors such as temperature, precipitation, and solar radiation, as well as anthropogenic factors such as ecological engineering and population migration, will affect the conditions for vegetation. However, the relationships among various factors remain unclear and the response of vegetation to climate change and anthropogenic activities in the Loess Plateau of China has not been well established. This study investigated the spatio-temporal characteristics and relationships between vegetation coverage and climatic factors in the Loess Plateau for the period of 1985–2015. Further analysis separated the anthropogenic and climatic factors on vegetation succession based on residual analysis. The results showed that the normalized difference vegetation index(NDVI) followed a significant upward trend with annual change rates of 0.15% during 1985–2015. The trend of human-induced NDVI increase was consistent with the spatial distribution of increasing forest areas in the eastern part of the Loess Plateau. Eco-restoration projects were the main driving factors that promoted vegetation coverage on the Loess Plateau. Furthermore, these results demonstrated that migrants to cities in the Loess Plateau could relieve ecological pressures and promote vegetation restoration. Therefore, the government should strive to increase population mobility and restore vegetation to sustain this particularly fragile ecological environment.  相似文献   

11.
准确认识三江源植被生产力月度尺度的时空格局变化,对三江源畜牧业生产以及生态保护政策制定具有重要意义,可稳定获取的重访周期为4 d的16 m分辨率GF-1/WFV数据使中等空间分辨率的月度NPP产品生产成为可能。本文建立了一套以GF-1/WFV为基本数据源的中等空间分辨率草地月度NPP估算技术方法,并评估了其在三江源地区应用的可行性。在黄河源区玛多县的实验表明以GF-1/WFV为基础,以MODIS13Q1数据为补充,可以获得覆盖全区的中等空间分辨率月度NDVI数据,据其反演得到的草地NPP,地面验证精度在70%以上,优于MODIS NPP产品精度,且能更为详细地反映草地生产力变化的空间差异,在青海三江源地区利用GF-1/WFV数据生产中等空间分辨率的草地月度NPP产品是可行的。  相似文献   

12.
青藏高原脆弱的高寒植被对外界干扰十分敏感,使其成为研究植被对气候变化响应的理想区域之一。青藏高原气候变化剧烈,在较短的合成时间研究气候变化对植被的影响十分必要。因此,本文利用GIMMS NDVI时间序列数据集,研究了1982-2012年青藏高原生长季月尺度植被生长的时空动态变化,探讨了其与气温、降水量和日照时数等气候因子的响应关系。结果表明:在区域尺度上,除8月外,其他各月份植被均呈增加趋势,显著增加多发生在4-7月和9月;大部分月份的NDVI增加速率随着时段的延长显著减小,表明NDVI增加趋势放缓;在像元尺度上,月NDVI显著变化的区域多呈增加趋势,但显著减少范围的扩张多快于显著增加。4月和7月植被生长主要是受气温和日照时数共同作用,6月和9月受气温的控制,而8月则主要受降水量的影响。长时间序列NDVI数据集的出现为采用嵌套时段研究植被生长变化趋势奠定了前提,而植被活动变化趋势的持续性则有助于形象表征植被活动变化过程、深入理解植被对气候变化的响应和预测植被未来生长变化趋势。由此推测,青藏高原月NDVI未来增加趋势总体上趋于缓和,但在像元尺度显著变化的区域趋于增加。  相似文献   

13.
植物生长季的变化反映了全球气候变化对生态环境的影响。本研究以2000-2006年间MODIS-NDVI影像数据集,使用TIMESAT软件从归一化植被指数(NDVI)时间序列中,分别提取福建省不同森林植被的生长季开始日期(Start of Season,SOS)、生长季结束日期(End of Season,EOS)和生长季长度(Length of season,LOS)等物候参数,并与全省尺度的气温与降水量进行相关分析。结果表明:不同森林类型NDVI与当月月均气温之间具有较显著的相关性(R2为0.72-0.79,p<0.01),同期温度变化对植被生长的影响相对于降水量更重要;而植被生长对降水量的响应存在大约2个月的时滞效应(R2为0.54-0.75,p<0.01),说明前期的降水累积对于后续植被生长有较显著影响。福建省森林植被生长季持续时间约213~223 d,开始于每年4月初到4月中旬(第98~103 d),结束于11月中旬前后(第316~321 d)。其中,南亚热带森林生长季长于中亚热带森林,相同气候条件下的阔叶林生长季时间略长于针叶林。另外,春季(2-4月)气温变化是导致福建省内2个气候带森林生长季开始时间、生长季结束时间及生长季长度变化的关键因素,而伴随春季温度升高,植被生长季开始时间提前(R2为0.83,p<0.01),同时生长季长度延长(R2为0.80,p<0.01)。7 a间,生长季持续时间呈现微弱延长趋势,总体延长幅度为2.4~3.1 d。  相似文献   

14.
京津冀地区植被时空动态及定量归因   总被引:2,自引:0,他引:2  
作为气候变化的敏感指示器,植被的物候、生长、空间分布格局等特征及其动态变化主要取决于气候环境中的水热条件,因此在气候变化背景下,气候-植被关系成为了全球变化研究的前沿和热点问题。本文综合平均温度、降水、水汽压、湿度、日照时数、SPEI等气候因子,坡度、坡向海拔等地形因子及人为活动因子,应用地理探测器方法针对2006-2015年京津冀地区不同季节NDVI、不同地貌类型区、不同植被类型区生长季NDVI的定量归因研究,揭示了过去10年间植被时空分布格局,及植被对气候、非气候因素响应的季节差异与区域差异,以期为生态工程的建设与修复提供参考意义。趋势分析表明:①2006-2015年京津冀地区NDVI呈现增加趋势,但存在显著的空间差异,如山地生长季NDVI的增长速率大于平原、台地、丘陵等地;②基于地理探测器的定量归因结果表明,降水是年尺度上NDVI空间分布的主导因子(解释力39.4%),土地利用与降水的交互作用对NDVI的影响最为明显(q=58.2%);③NDVI对气候因子的响应存在季节性及区域性差异,水汽压是春季NDVI空间分布的主导因子,湿度是夏、秋两季的主导因子,土地利用是冬季的主导因子;④影响因子对生长季NDVI的解释力因不同地貌类型区、不同植被类型区而差异显著。  相似文献   

15.
Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understand the trends of vegetation cover, this research examined the spatial-temporal trends of global vegetation by employing the normalized difference vegetation index(NDVI) from the Advanced Very High Resolution Radiometer(AVHRR) Global Inventory Modeling and Mapping Studies(GIMMS) time series(1982–2015). Ten samples were selected to test the temporal trend of NDVI, and the results show that in arid and semi-arid regions, NDVI showed a deceasing trend, while it showed a growing trend in other regions. Mann-Kendal(MK) trend test results indicate that 83.37% of NDVI pixels exhibited positive trends and that only 16.63% showed negative trends(P 0.05) during the period from 1982 to 2015. The increasing NDVI trends primarily occurred in tree-covered regions because of forest growth and re-growth and also because of vegetation succession after a forest disturbance. The increasing trend of the NDVI in cropland regions was primarily because of the increasing cropland area and the improvement in planting techniques. This research describes the spatial vegetation trends at a global scale over the past 30+ years, especially for different land cover types.  相似文献   

16.
生态过程模型已成为探测陆地植被对气候变化响应的重要手段之一,最适温度作为模型模拟过程中的一个重要参数,其准确性对模型模拟结果有重要影响。本研究以2001-2010年MODIS-NDVI、2001-2010年气象台站温度数据,以及2000年土地覆盖数据,结合前人研究的成果,将最适温度定义为适宜植物生长温度上下限之间所有月均温度的均值,并从植被类型角度出发,探讨不同植物生长的最适温度,以期为生态过程模型的改进提供参数优化方案。研究表明,不同植被类型植被生长的最适温度存在较大差异。常绿针叶林、常绿阔叶林、落叶针叶林、落叶阔叶林、混交林、灌丛、草地、农田和建设用地的最适温度,依次为22.4℃、23.4℃、14.1℃、19.5℃、20.7℃、22.6℃、15.4℃、24.8℃和25.6℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号