首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to retrieve ocean wave spectra from SAR images, named Parameterized First-guess Spectrum Method (PFSM), was proposed after interpretation of the theory to ocean wave imaging and analysis of the drawbacks of the retrieving model generally used. In this method, with additional information and satellite parameters, the separating wave-number is first calculated to determine the maximum wave-number beyond which the linear relation can be used. The separating wave-number can be calculated using the additional information on wind velocity and parameters of SAR satellite. And then the SAR spectrum can be divided into SAR spectrum of wind wave and of swell according to the result of separating wave-number. The portion of SAR spectrum generated by wind wave, is used to search for the most suitable parameters of ocean wind wave spectrum, including propagation direction of ocean wave, phase speed of dominating wave and the angle spreading coefficient. The swell spectrum is acquired by directly inversing the linear relation of ocean wave spectrum to SAR spectrum given the portion of SAR spectrum generated by swell. We used the proposed method to retrieve the ocean wave spectrum from ERS-SAR data from the South China Sea and compared the result with altimeter data. The agreement indicates that the PFSM is reliable.  相似文献   

2.
A method for sea surface wind field retrieval from SAR image mode data   总被引:2,自引:0,他引:2  
To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions(GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by combining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval results by a combination method(CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error(RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.  相似文献   

3.
Based on a coupled hydrodynamic-ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the “dry-wet” method were designed to deal with the moving boundary. The minimum water depth limit condition was introduced for numerical simulation stability and to avoid producing negative depths in the shallow water areas. Using the Eulerian transport approaches included in COHERENS for the advection and dispersion of dissolved pollutants, numerical simulation of dissolved pollutant transport and diffusion in the Changjiang River estuary were carried out. The mass centre track of dissolved pollutants released from outlets in the south branch of the Changjiang River estuary water course has the characteristic of reverse current motion in the inner water course and clockwise motion offshore. In the transition area, water transport is a combination of the two types of motion. In a sewage-discharge numerical experiment, it is found that there are mainly two kinds of pollution distribution forms: one is a single nuclear structure and the other is a double nuclear (dinuclear) structure in the turbid zone of the Changjiang River estuary. The rate of expansion of the dissolved pollutant distribution decreased gradually. The results of the numerical experiment indicate that the maximum turbid zone of the Changjiang River estuary is also the zone enriched with pollutants. Backward pollutant flow occurs in the north branch of the estuary, which is similar to the backward salt water flow, and the backward flow of pollutants released upstream is more obvious.  相似文献   

4.
This paper presents a method developed for estimating wave height from synthetic aperture radar (SAR) imagery without prior assumption of noise distribution. It is based on two-dimenslonal ocean wave spectra retrieved from fully calibrated SAR images. Wen‘s spectrum was used as first-guess wave spectrum in the retrieval process. Comparison of the estimated wave height obtained by this method from two ERS-1 SAR subimages dated 23 July 1994 with in-situ measurements showed that the method works well.  相似文献   

5.
合成孔径雷达干涉测量原理与应用   总被引:12,自引:7,他引:5  
合成孔径雷达(SAR)是一种微波相干成像方法,应用不同波段的雷达信号可以对地球表面不同的散射特性成像。合成孔径雷达干涉(InSAR)是将两个不同轨道位置或不同时间获得的复数SAR数据进行相位差分处理,从这些差分干涉数据中可以提取特别有用的信息,用于绘制地形图,测量诸如地震、火山、冰川运动等造成的地形变,研究植被覆盖特性、洋流等。介绍了InSAR的基本原理与应用,并对影响干涉结果的一些重要因素进行了分析。  相似文献   

6.
ImODUrmNJ0GFS(JointGlobaldrinFLuxStudy:l99()-2OO()isaworldwidenawhprogramfocusingontheoasns'buharolewhentheC0,prmtageintheairincreasesandtheatmOspheretemPeraturebo.ThefluxofsuspendedrnateriaIs(SM)intheEastChinaScaisboortanttotheworld'srnatterchaltfon,astheChangiiangRiver,thelargestriverinAsia,dischargesbillionsoftOnsoftheidWhterintoit.ManystudAshavebocondtalonSMmovementncarChina'scoastalseas.Yang(l983)studiedthefine%rainedsededtSfromtheChangiiangandHuangheRiversWhileQin(l983)fo…  相似文献   

7.
Gaofen-3(GF-3) is the first Chinese space-borne satellite to carry the C-band multi-polarization synthetic aperture radar(SAR). Marine applications, i.e., winds and waves retrieved from GF-3 SAR images, have been operational since January 2017. In this study, we have collected more than 1000 quad-polarization(vertical-vertical(VV); horizontal-horizontal(HH); vertical-horizontal(VH); horizontal-vertical(HV)) GF-3 SAR images, which were acquired around the China Seas from September 2016 to September 2017. Wind streaks were visible in these images in co-polarization(VV and HH) channel. Geophysical model functions(GMFs), including the CMOD5N together with polarization ratio(PR) model and C-SARMOD, were used to retrieve winds from the collected co-polarization GF-3 SAR images. Wind directions were directly obtained from GF-3 SAR images. Then, the SAR-derived wind speeds were compared with the measurements at a 0.25? grid from the Advanced Scatterometer on board the Metop-A/B and microwave radiometer WindSAT. Based on the analysis, empirical corrections are proposed to improve the performance of the two GMFs. Results of this study show that the standard deviation of wind speed is 1.63 m s~(-1) with a 0.19 m s~(-1) bias and 1.71 m s~(-1) with a 0.26 m s~(-1) bias for VV-and HH-polarization GF-3 SAR, respectively. Our work not only systematically evaluates wind retrieval by using the two advanced GMFs and PR models but also proposes empirical corrections to improve the accuracy of wind retrievals from GF-3 SAR images around the China Seas and thus enhance the accuracy of near real-time operational SAR-derived wind products.  相似文献   

8.
Under suitable conditions of tidal current and wind, underwater topography can be detected by synthetic aperture radar (SAR) indirectly. Underwater topography SAR imaging includes three physical processes: radar ocean surface backscattering, the modulation of sea surface short wave spectrum by the variations in sea surface currents, and the modulation of sea surface currents by the underwater topography. The first process is described usually by Bragg scattering theory because the incident angle of SAR is always between 20°–70°. The second process is described by the action balance equation. The third process is described by an ocean hydrodynamic model. Based on the SAR imaging mechanism for underwater topography, an underwater topography SAR detection model and a simplified method for its calculation are introduced. In the detection model, a two-dimensional hydrodynamic model — the shallow water model is used to describe the motion of tidal current. Due to the difficulty of determining the expression of SAR backscattering cross section in which some terms can not be determined, the backscattering cross section of SAR image used in the underwater topography SAR detection is pro-processed by the simulated SAR image of the coarse-grid water depth to simplify the calculation. Taiwan Shoal, located at the southwest outlet of Taiwan Strait, is selected as an evaluation area for this technique due to the occurrence of hundreds of sand waves. The underwater topography of Taiwan Shoal was detected by two scenes of ERS-2 SAR images which were acquired on 9 January 2000 and 6 June 2004. The detection results are compared with in situ measured water depths for three profiles. The average absolute and relative errors of the best detection result are 2.23 m and 7.5 %, respectively. These show that the detection model and the simplified method introduced in the paper is feasible.  相似文献   

9.
Synthetic aperture radar(SAR)is a suitable tool to obtain reliable wind retrievals with high spatial resolution.The geophysical model function(GMF),which is widely employed for wind speed retrieval from SAR data,describes the relationship between the SAR normalized radar cross-section(NRCS)at the copolarization channel(vertical-vertical and horizontal-horizontal)and a wind vector.SAR-measured NRCS at cross-polarization channels(horizontal-vertical and vertical-horizontal)correlates with wind speed.In this study,a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3(GF-3)SAR data with noise-equivalent sigma zero correction using an empirical function.GF-3 SAR can acquire data in a quad-polarization strip mode,which includes cross-polarization channels.The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts.In particular,the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS.The accuracy of SAR-derived wind speed is around 2.10ms−1 root mean square error,which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration.The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms.This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction.  相似文献   

10.
Monitoring algal blooms by optical remote sensing is limited by cloud cover.In this study,synthetic aperture radar(SAR) was deployed with the aim of monitoring cyanobacteria-dominant algal blooms in Taihu Lake in cloudy weather.The study shows that dark regions in the SAR images caused by cyanobacterial blooms damped the microwave backscatter of the lake surface and were consistent with the regions of algal blooms in quasi-synchronous optical images,confirming the applicability of SAR for detection of surface blooms.Low backscatter may also be associated with other factors such as low wind speeds,resulting in interference when monitoring algal blooms using SAR data alone.After feature extraction and selection,the dark regions were classified by the support vector machine method with an overall accuracy of 67.74%.SAR can provide a reference point for monitoring cyanobacterial blooms in the lake,particularly when weather is not suitable for optical remote sensing.Multi-polarization and multi-band SAR can be considered for use in the future to obtain more accurate information regarding algal blooms from SAR data.  相似文献   

11.
Bao  Sude  Meng  Junmin  Sun  Lina  Liu  Yongxin 《中国海洋湖沼学报》2020,38(1):55-63
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR) remote sensing images. Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic. In this paper, ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN) framework; for this purpose, 888 internal wave samples are utilized to train the convolutional network and identify internal waves. The experimental results demonstrate a 94.78% recognition rate for internal waves, and the average detection speed is 0.22 s/image. In addition, the detection results of internal wave samples under dif ferent conditions are analyzed. This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.  相似文献   

12.
RESPONSE OF THE OCEAN UPPER MIXED LAYER TO ATMOSPHERIC FORCING   总被引:1,自引:0,他引:1  
Using a one-dimension Turbulence Kinetic Energy(TKE)mixed layer model based on a simple eddyKinetic energy parameterization of the ocean upper mixed layer,some numerical examinations are intro- duced in this paper.These examination results show that the TKE ocean mixed layer model can respondwell to the effect of atmospheric forcing on the ocean upper mixed layer.The joint effect of wind stressand heat exchange on the ocean upper layer has nonlinear characteristics.The adjustment time of the re-sponse of the ocean upper mixed layer to the atmospheric forcing is about 12 hours in this model.  相似文献   

13.
We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km 2 , less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km 2 , less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km 2 , large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km 2 , large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.  相似文献   

14.
The influence derived from atmosphere transmitting of radar wave, in the application of high-resolution airborne Synthetic Aperture Radar (SAR) stereo positioning, may produce some phase errors, and eventually be introduced into positioning model. This paper described the principle of airborne SAR stereo positioning and the error sources of stereo positioning accuracy that arose from atmosphere transmitting, established a corresponding assessment model of atmosphere transmitting influence, and testified the model and the assessment principle taking the 1-m resolution airborne SAR images of Zigong City, Sichuan Province in China, as the test dataset. The test result has proved that the assessment model is reliable and reasonable. And, it has shown that the phase error arisen from time delay is the main error source during the atmosphere transmitting, which has much more influences on cross-track direction and introduces a stereo positioning error of about eight meters, but less on the along-track direction.  相似文献   

15.
Based on more than 30 years observed sectional temperature data since the 1960s, and compared with multi-year wind and Changjiang (Yangtze) River discharge data, spatial-temporal variations of the East China Sea Cold Eddy (ECSCE) in summer was analyzed in relationship to ocean circulation and local atmospheric circulation. Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyseswere applied to this study. The results show that: l) The ECSCE in summer possesses significant interannual variabilities, which are directly associated with oceanic and atmospheric circulation anomaly. Main fluctuations demonstrate their falling in basically with E1 Nino events (interannual) and interdecadal variability. 2) The ECSCE in summer is closely related to the variation of the Yellow Sea Warm Current (YSWC) and the Changjiang River discharge. The stronger the YSWC, the more intensive the ECSCE with its center shifting westward,and vice versa. However, a negative correlation between the Changjiang River discharge and the ECSCE strength is shown. The ECSCE was strengthened after the abrupt global climate change affected by the interdecadal variation of the YSWC. 3) SVD analysis suggested a high correlation between the variation of the ECSCE in summer and the anomalous cyclonic atmospheric circulation over the ECS. Intensification of the cyclonic wind strengthens the ECSCE, and vice versa. 4) The cyclonic atmospheric circulation has dominant influence on the interannual variation of the ECSCE, and the influence of the ocean circulation takes the second in. The ECSCE was usually stronger in E1 Nifio years affected by strong cyclonic circulation in the atmosphere. The variation in strength of the ECSCE resulted from the joint effect of both oceanic and atmospheric circulation.  相似文献   

16.
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy’s vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.  相似文献   

17.
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.  相似文献   

18.
Observation and analysis of ocean wave diffraction in near-shore and near-island region was performed with Synthetic Aperture Radar (SAR) data, using an optimized retrieval method named parameterized first-guess spectrum retrieval method. The results retrieved from ERS-SAR and ENVISAT-ASAR images showed that, in the region sheltered by land jut, the energy of long waves is reduced by 10%-20% and that the propagation direction of long waves is changed due to the effect of topography. In the shadow zone behind the island, ocean wave can propagate along the seashore instead of perpendicular to the coastline, as shown by SAR images.  相似文献   

19.
This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s~(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.  相似文献   

20.
Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号