首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
With parameterized wave mixing, the circulation and the tidal current in the Bering Sea were simulated simultaneously using the three-dimensional Princeton Ocean Model. The simulated circulation pattern in the deep basin is relatively stable, cyclonic, and has little seasonal change. The Bering Slope Current between 200-1000 m isobaths was estimated to be 5 Sv in volume transport. The Kamchatka Current was estimated to be 20 Sv off the Kamchatka Peninsula. The Bering shelf circulations vary with season, driven mainly by wind. These features are consistent with historical esti- mates. A counter current was captured flowing southeastward approximately along the 200 m isobath of the Bering Slope, opposite to the northwestward Bering Slope Current, which needs to be validated by observations. An upwelling current is located in the shelf break ( 120-1000 m) area, which may imply the vertical advection of nutrients for supporting the Bering Sea Green Belt seasonal plankton blooms in the breakslope area. The Bering Slope Current is located in a downwelling area.  相似文献   

2.
ImODUcrIONThewesternPadricconsistSofaseriesofrnarginalbasins(twoofwhicharetheSrsandSuluSea)thatareseparatalfromeachotherbysdriofvaryingdepths.The25OOmdepthsiliseparatingtheSrsfromthewesternNorthPadricallowiPadricinteediatewatertoentertheSCS.Inconhast,theSuluSeaiscomPldelysurmundedbyasill,mostofwhichisshallowerthanlOomindepth.Thedeepestchanne1intotheSLduSeais42Omdeep(MindoroStrait)andcutSacrossthesillthatseparateStheSuluSeafromtheSrs.TheseenvironmntSresultalinspeda1hydrographicse…  相似文献   

3.
The northern slope region of the South China Sea(SCS) is a biological hot spot characterized by high primary productivity and biomasses transported by cross-shelf currents, which support the spawning and growth of commercially and ecologically important fish species. To understand the physical and biogeochemical processes that promote the high primary production of this region, we conducted a cruise from June 10 and July 2, 2015. In this study, we used fuzzy cluster analysis and optimum multiparameter analysis methods to analyze the hydrographic data collected during the cruise to determine the compositions of the upper 55-m water masses on the SCS northern slope and thereby elucidate the cross-slope transport of shelf water(SHW) and the intrusions of Kuroshio water(KW). We also analyzed the geostrophic currents derived from acoustic Doppler current profiler measurements and satellite data. The results reveal the surface waters on the northern slope of the SCS to be primarily composed of waters originating from South China Sea water(SCSW), KW, and SHW. The SCSW dominated a majority of the study region at percentages ranging between 60% and 100%. We found a strong cross-slope current with speeds greater than 50 cms~(-1) to have carried SHW into and through the surveyed slope area, and KW to have intruded onto the slope via mesoscale eddies, thereby dominating the southwestern section of the study area.  相似文献   

4.
1 Introduction18Oinmarineenvironmentplaysanimportantroleinoceanographicalstudy .Asastableisotopeofoxygen ,18OtogetherwithhydrogenatomsconstituteswatermoleculeH218OandmoveswithalargeamountofH2 Omoleculesinseawater.Sothatδ18Obecomesanidealtracerforthemovemento…  相似文献   

5.
6.
Summary of results from a high - resolution pan - Arctic ice - ocean model are presented for the northern North Pacific, Bering, Chukchi, and Beaufort seas. The main focus is on the mean circulation, communication from the Gulf of Alaska across the Bering Sea into the western Arctic Ocean and on mesoscale eddy activity within several important ecosystems. Model results from 1979 -2004 are compared to observations whenever possible. The high spatial model resolution at 1/12o (or -9 - km) in the horizontal and 45 levels in the vertical direction allows for representation of eddies with diameters as small as 36 km. However, we believe that upcoming new model integrations at even higher resolution will allow us to resolve even smaller eddies. This is especially important at the highest latitudes where the Rossby radius of deformation is as small as 10 km or less.  相似文献   

7.
Three cruises were conducted to investigate the distributions of nutrients,chlorophyll a(Chla),new and regenerated primary production,bacterial abundance and production,and microzooplankton grazing rates in the Yellow Sea(YS)and the South China Sea(SCS)during March and May.As the water column moved from low to high temperature,weak to strong stratification and high to low nutrients from the YS to the SCS,Chl-a,primary production and bacterial biomass decreased.In contrast,bacterial production,microzooplankton grazing and size preference increased from the YS to the SCS.The increasing grazing activity and decreasing f-ratio from the YS to the SCS suggest roles of regenerated nutrients in the supporting the community increased and more bacteria played important roles in the carbon flow in the oligotrophic SCS than in the eutrophic YS.These variabilities force the classical food chain dominated community in the eutrophic waters into the microbial loop,which is dominant in oligotrophic waters.As nutrients decrease,temperature and grazing activity increase from the YS to the SCS.The increasing ratio of integrated bacterial production to integrated primary production indicates that communities change from autotrophy to heterotrophy and waters change from a carbon sink to a carbon source.  相似文献   

8.
9.
The Distribution of Dissolved Aluminum in the Yellow and East China Seas   总被引:2,自引:0,他引:2  
Water samples containing dissolved aluminum were collected from the Yellow and East China Seas in October-November 2000. The average concentrations of dissolved AI in the Yellow Sea (YS) and East China Sea (ECS) were 0.042 and 0.056 μ molL^-1, respectively. The concentration of dissolved aluminum decreased gradually across the continental shelf. The lower concentrations appeared in the YS cold water center and in the bottom layer at the shelf edge of the ECS, where they were 0.016 and 0.011 μmolL^-1, respectively. The distribution of dissolved Al was controlled by physical mixing processes rather than biological uptake processes. The impact of different water masses along the PN transect was calculated based on the mass balance model. The results show that the impact of the Changjiang River was mainly concentrated on the coastal area and the top thermocline water on the ECS shelf, where the impact percentage decreased from 12.6% to 1.1% in the surface water, while the contribution of the Kuroshio water was dominant on the ECS shelf in this survey, increasing from 77.6% to 97,8% along the PN transect from the Changjiang River Estuary to the Ryukyu Islands. It is concluded that aluminum can serve as a proper tracer for studying the impact of Changjiang terrestrial matter on the ECS shelf water.  相似文献   

10.
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model. The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan: high correlation (r = 0.92) with the on-shore volume flux in the lower layer (50–200 m); low correlation (r = 0.50) with the on-shore flux in the upper layer (0–50 m). Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162°E by about 14 months, and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves. The intrusion of Kuroshio surface water is also influenced by local winds. The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf. The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath, and northeastward to the region near the 90 m isobath.  相似文献   

11.
Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.  相似文献   

12.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   

13.
根据 1997年 12月至 1999年 6月在南海北部陆架区海域进行的底拖网渔业资源调查的资料 ,统计分析了南海北部陆架区海域深水金线鱼性腺成熟期的组成及分布、季节性变化和水深变化规律。结果表明 ,南海北部陆架区海域深水金线鱼的产卵场位于广东沿海水深 6 0~ 15 0m海区 ,尤其是珠江口外海区的群体更为密集 ;该生殖群体的产卵期较长 ,且分布范围大 ,未见有显著性变化。  相似文献   

14.
INTRODUCTIONContinentalshelfareasarereportedtohavehighproductivity (GuoandPan ,1 992 ;Furuyaetal.,1 998.,Ningetal.,1 988) .Eventhoughtheycompriseonlyasmallpartoftheworld’stotaloceanicarea ,theirproductivityaccountsforalargeproportionofthetotalprimaryproductivity(Wol…  相似文献   

15.
During the two cruises in March and July of 2011, the tidal cycling of turbulent properties and the T/S profiles at the same location in seasonally stratified East China Sea (ECS) were measured synchronously by a bottom-mounted fast sampling ADCP (acoustic Doppler current profiler) and a RBR CTD (RBR-620) profiler. While focusing on the tide-induced and stratification’s impact on mixing, the Reynolds stress and the turbulent kinetic energy (TKE) production rate were calculated using the ‘variance method’. In spring, the features of mixing mainly induced by tides were clear when the water column was well-mixed. Velocity shear and turbulent parameters intensified towards the seabed due to the bottom friction. The components of the velocity shear and the Reynolds stress displayed a dominant semi-diurnal variation related to velocity changes caused by the flood and ebb of M2 tide. Stratification occurred in summer, and the water column showed a strongly stratified pycnocline with a characteristic squared buoyancy frequency of N2 ~ (1–6) × 10?3 s?2. The components of the velocity shear and the Reynolds stress penetrated upwards very fast from the bottom boundary layer to the whole water column in spring, while in summer they only penetrated to the bottom of the pycnocline with a relatively slow propagation speed. In summer, the TKE production within the pycnocline was comparable with and sometimes larger than that in the well-mixed bottom layer under the pycnocline. Considering the associated high velocity shear, it is speculated that the mixing in the pycnocline is a result of the local velocity shear.  相似文献   

16.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

17.
Vertical profiles of chl-a and primary productivity in the middle continental shelf area and eddy area of the East China Sea were studied using data from a cruise in the East China Sea in February to March, 1997 and a cruise in July, 1998. The results showed that chl-a vertical distribution closely related to in situ hydrological and nutrient conditions. Chla-a concentration ranged from 0.22 to 0.35 mg/m3 and 0.93–1.09 mg/m3 in the eddy area and in the middle continental shelf area, respectively. In both areas, chl-a concentrations in deep layers were slightly higher than those in shallow layers, but was of the same order of magnitude. In summer, when a thermocline existed in the water column, highest chl-a concentrations appeared at the base of the thermocline layers in both areas. In the eddy area, chl-a concentration maximized at 31.743 mg/m3, and averaged 1.143 mg/m3 below 30 m depth. In the middle continental shelf area, the highest chl-a concentration was 2.120 mg/m3, the average was 1.168 mg/m3. The primary productivity reached 1418.76 mgC/(m2·d) in summer and 1360.69 mgC/(m2·d) in winter. In the eddy area, the primary productivity was 787.50 mgC/(m2·d) in summer and 159.04 mgC/(m2·d) in winter. Vertical carbon sinking rate from the deep layer to the bottom in both areas is also discussed in this paper. Contribution NO. 4183 from the Institute of Oceanology, Chinese Academy of Sciences. Project No. 49636210 supported by NSFC.  相似文献   

18.
This study on the sectional and vertical distribution of dissolved oxygen (DO) and the O2 fluxes across the sea-air interface in East China Sea (ESC) waters shows that the waters were in steady state and that the difference of DO was great in upper and bottom waters in Apr. 1994; but that seawater mixing was strong and the difference of DO was small in upper and bottom waters in Oct. 1994. The above conclusions were specially obvious in continental shelf waters under 100 m. The DO maximum in subsurface layer waters appeared only at several stations and in general the DO in the waters decreased with depth. The horizontal distributions of O2 fluxes across the sea-air interface appeared in stripes in Leg 9404 when most regions covered were supersaturated with O2 seawater to air flux was large, and that on section No. 1 was 1.594 L/m2·d. The horizontal distribution of O2 fluxes across the sea-air interface appeared lumpy in Leg 9410, when most regions covered were unsaturated with O2·O2 was dissolved from air to seawater, and the fluxes were 0.819 L/m2·d on section No. 1 in Leg 9310, 0.219 L/m2·d in Leg 9410. The main reasons for DO change in surface layer seawater were the mixture of upper and bottom layer water, and the exchange of O2 across the sea-air interface. The variation of DO by biological activity was only 20% of total change of DO. Contribution No. 2716 from Institute of Oceanology, Chinese Academy of Sciences.  相似文献   

19.
Teng  Fei  Fang  Guohong  Xu  Xiaoqing 《中国海洋湖沼学报》2017,35(5):987-1001
A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.  相似文献   

20.
Seasonal variation in abundance and species composition of a planktonic diatom assemblage distributed in the water column and also settled on the bottom was investigated for the shallow coastal water in Matsushima Bay on the Pacific coast of northeastern Japan during the period from October 1999 to September 2000. A spring bloom of diatoms began in April when nutrient concentrations started to increase, indicating the importance of nutrients. Viable cells of Skeletonema costatum and Thalassiosira spp., which were the dominant species in the water column throughout the year, were also always abundant in the bottom sediment. Both populations in the water column and on the bottom fluctuated essentially in parallel. For the planktonic diatoms in shallow coastal waters to maintain their vegetative populations in the water column, it would be advantageous for them to have a seeding population of viable cells on the bottom that are easily resuspended into the upper photic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号