首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Large spoil tips from reconstruction works as a result of the Wenchuan Earthquake in China are new debris flow hazards to the human society. However, there is a lack of detailed comparative study on debris flow initiation in different spoil materials. This paper describes a series of tests and analyses on debris flow characteristics (initiation, scale and mechanism) at six sites with limestone and sandstone materials near the Dujiangyan area. Research shows the limestone spoil contains debris flow prone clay content with high concentration of montmorillonite (highly expandable). In addition, limestone spoil is of such a low permeability that water mainly concentrates in the upper surface layer. Those factors make it easy for the increase of pore water pressure, decline of internal friction and conhesion force, leading to the occurence of large debris flows. In contrast, the sandstone spoil is less problematic and causes no major debris flow threats. Based on our research on the mechanism, the“stereometric drainage”method is sucessfully applied to control limestone spoil debris flows.  相似文献   

2.
This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979–2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distribution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warming in the tropical Indian Ocean, which confirm the mechanism of ‘warmer-get-wetter’ theory. For a long period 1950–2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979–2005, implying possible decadal variation in the NIO summer climate.  相似文献   

3.
Erosion agents and patterns profoundly affect hillslope soil loss characteristics. However, few attempts have been made to analyze the effects of rainfall and inflow on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. The objective of this study was to discuss the erosive agent(rainfall or inflow), hillslope erosion pattern(sheet erosion or rill erosion) and slope gradient effects on runoff and soil losses. Two soil pans(2.0 m long, 0.5 m wide and 0.5 m deep) with 5° and 10° slopes were subjected to rainfall(0 and 70 mm h–1) and inflow(0 and 70 mm h–1) experiments. Three experimental combinations of rainfall intensity(RI) and inflow rate(IR) were tested using the same water supply of 70 mm by controllingthe run time. A flat soil surface and a soil bed with a straight initial rill were prepared manually, and represented hillslopes dominated by sheet erosion and rill erosion, respectively. The results showed that soil losses had greater differences among treatments than total runoff. Soil losses decreased in the order of RI70+IR70 RI70+IR0 RI0+IR70. Additionally, soil losses for hillslopes dominated by rill erosion were 1.7-2.2 times greater at 5° and 2.5-6.9 times greater at 10° than those for hillslopes dominated by sheet erosion. The loss of 0.25 mm soil particles and aggregates varying from 47.72%-99.60% of the total soil loss played a dominant role in the sediment. Compared with sheet erosion hillslopes, rill erosion hillslopes selectively transported more microaggregates under a relatively stable rill development stage, but rills transported increasinglymore macroaggregates under an active rill development stage. In conclusion, eliminating raindrop impact on relatively gentle hillslopes and preventing rill development on relatively steep hillslopes would be useful measures to decrease soil erosion and soil degradation in the Mollisol region of northeastern China.  相似文献   

4.
Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed(WS) and significant wave height(SWH) in the China Seas over the period 1988–2011 using the Cross-Calibrated Multi-Platform(CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III(WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988–2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s~(-1)yr~(-1) and 1.52 cm yr~(-1), respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Ni?o and a significant increase in the occurrence of gale force winds in the region.  相似文献   

5.
含优势渗流层边坡在降雨入渗的作用下其渗流场往往具有较高的不确定性,这给边坡的稳定性评价带来困难,通常采用概率的方法解决此类问题。针对含优势渗流层边坡降雨入渗下的可靠度问题,通过将应力分析中的点估计-有限元法引入到边坡渗流-稳定性分析,提出了考虑优势渗流层渗透特性不确定性的渗流概率分析和边坡可靠度分析方法;其次以广西某含碎石夹层土坡为例,分析了降雨入渗下碎石夹层的优势渗流效应及渗流概率,并基于此开展了该边坡降雨入渗下的可靠度分析。结果表明:①含优势渗流层边坡雨水沿优势渗流层渗入坡体内部的深度显著高于沿坡面渗入的深度;优势渗流层渗透特性的不确定性对渗流结果的影响较大,使得边坡稳定性分析具有较强的不确定性;②随着雨水入渗持时的增加,含优势渗流层边坡不同滑动面的失效概率总体呈现增加趋势,最危险滑动面的位置不断向边坡下部演化;依托工程滑动面位置的预测结果与工程实际吻合;③提出的概率分析方法适用于分析含优势渗流层边坡降雨入渗影响下的稳定性问题,而且具有计算量小的优势,可作这类边坡可靠度分析的一种新方法。   相似文献   

6.
The distribution of sediment chloroplastic pigments (Chl-a, i.e. chlorophyll a and Pha-a, i.e. phaeophorbide a) in the Southern Yellow Sea of China was studied. Samples were collected from four cruises in January and June 2003, and January and June 2004. The results show that the vertical distribution of Chl-a and Pha-a in the sediment layers 0-2cm, 2-5cm and 5-8cm, follows a stable ratio, 5:3:2. The average ratio of Pha-a to Chl-a in sediment is 2.83. Spearman 2-tailed rank correlation analysis shows that Chl-a and Pha-a contents in each sediment layer have a highly significant correlation. The average contents of Chl-a and Pha-a in the sediment of the 0-8cm layer in the investigated area are 0.31 -0.47μgg-1 and 1.28-1.40 μgg-1 sediment (dry weight), respectively. The average Chl-a and Pha-a contents in sediment are higher in summer than in winter. ANOVA analysis shows that there is a highly significant variation among the Chl-a contents (P = 0.002 <0.01) of the four cruies, but this is not true for the case of Pha-a content (P = 0.766>0.05). The average Chl-a and Pha-a contents in the 2 sediment layers (0-2cm and 2-5cm) have significant or highly significant correlations with organic matter (OM), median diameter (Mdφ), silt plus clay percentage in the January 2003 cruise. In the June 2003 cruise, the average Chl-a content in the 3 sediment layers (0-2cm, 2-5cm, and 5-8cm) has a significant correlation with meiofauna biomass, and Pha-a content has highly significant correlations with water depth, bottom water temperature, OM and Mdφ The contents of Chl-a and Pha-a are lower than those in estuaries and intertidal areas, but close to those in the same area studied previously.  相似文献   

7.
Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.  相似文献   

8.
Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacacia) plantations(RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration(15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season(June to September) of 2017, smart probes were placed at nine depths(10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events(mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr(14.07%) 20-yr(10.12%) 15-yr(8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0-60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5-322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration(more than 228.2 mm) and deeper infiltration depths(80-100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration(174.2 mm) and a shallow infiltration depth(60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas.  相似文献   

9.
Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L.(alfalfa) grassland biomass carbon and soil organic carbon density(SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period(viz. 0–10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0–10 year. During 0–30 year, the SOCD from 0–100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62 ± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for 10 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.  相似文献   

10.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

11.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

12.
Influences of the Wenchuan Earthquake on sediment supply of debris flows   总被引:2,自引:2,他引:0  
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

13.
Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.  相似文献   

14.
The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes.  相似文献   

15.
Reservoir sedimentation dynamics were interpreted using Cs-137 activity,particle size and rainfall erosivity analysis in conjunction with sediment profile coring.Two sediment cores were retrieved from the Changshou reservoir of Chongqing,which was dammed in 1956 at the outlet of Longxi catchment in the Three Gorges Area using a gravity corer equipped with an acrylic tube with an inner diameter of 6 cm.The extracted cores were sectioned at 2 cm intervals.All sediment core samples were dried,sieved(2 mm) and weighed.137 Cs activity was measured by γ-ray spectrometry.The particle size of the core samples was measured using laser particlesize granulometry.Rainfall erosivity was calculated using daily rainfall data from meteorological records and information on soil conservation history was collated to help interpret temporal sedimentation trends.The peak fallout of 137 Cs in 1963 appeared at a depth of 84 cm in core A and 56 cm in core B.The peaks of sand contents were related to the peaks of rainfall erosivity which were recorded in 1982,1989,1998 and 2005,respectively.Sedimentation rates were calculated according to the sediment profile chronological controls of 1956,1963,1982,1989,1998 and 2005.The highest sedimentation rate was around 2.0 cm?a~(-1) between 1982 and 1988 when the Chinese national reform and the Household Responsibility System were implemented,leading to accelerated soil erosion in the Longxi catchment.Since 1990 s,andparticularly since 2005,sedimentation rates clearly decreased,since a number of soil conservation programs have been carried out in the catchment.The combined use of 137 Cs chronology,particle size and rainfall erosivity provided a simple basis for reconstructing reservoir sedimentation dynamics in the context of both physical processes and soil restoration.Its advantages include avoiding the need for full blown sediment yield reconstruction and the concomitant consideration of core correlation and corrections for autochthonous inputs and reservoir trap efficiency.  相似文献   

16.
Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.  相似文献   

17.
降雨过程中降雨强度的变化会影响土体渗透率及饱和过程, 从而改变土体的力学性质, 影响泥石流起动模式及破坏规模。为探究不同降雨模式对震后泥石流起动机制的影响, 自制了小比例模型槽, 结合可控雨型的降雨模拟系统, 进行了人工降雨诱发泥石流的室内模型试验; 基于不同降雨模式下泥石流的起动过程分析, 对坡体内部含水率和孔隙水压力的变化规律进行了研究。研究结果表明: 递增型降雨模式下泥石流发生突然, 呈整体滑坡转化为泥石流起动模式, 坡体破坏规模最大; 递减型降雨模式下表现为后退式溃散失稳起动模式; 均匀型降雨模式下则表现为溯源侵蚀起动模式; 中峰型降雨模式下以局部滑坡转化为泥石流起动模式; Ⅴ型降雨模式下则由坡面侵蚀加剧转化为泥石流启动模式, 破坏规模最小。研究结果可以为九寨沟地区泥石流的预报预警提供参考。   相似文献   

18.
There exist many fluvio-glacial deposits in the valley of Dadu River,Southwest China,which dates back to the Pleistocene.As some of the deposits are located within the seasonal water fluctuation zone of reservoirs,the seepage of groundwater acts as one of the key factors influencing their stability.Investigation into the sediment properties and permeability is,therefore,crucial for evaluating the sediment stability.In this study,in-situ permeability and sieving tests have been carried out to determine grain size distribution,correlations of permeability and hydraulic gradients,and relations between permeability and sedimentation properties.Test results indicate that the deposits are composed mostly of sands,gravels,cobbles and boulders,and the percentage of fines is less than 5%.The sediments have high densities,low porosities and natural moisture contents.At low hydraulic gradients,the seepage velocity obeys the Darcy’s law,while a nonDarcy permeability is observed with hydraulic gradient exceeding a certain value(about 0.5-0.7).The linear permeability coefficient ranges from 0.003 to 0.009 cm/s.Seepage failure occurs above a threshold between 1.1 and 1.5.The test data fit well with the non-linear permeability equations suggested by Forchheimer and Izbash.The non-Darcy permeability proves to be in accordance with the seepage equation suggested by Izbash with the power ’m’ of about 0.6-0.7.The characteristic grain sizes of the studied deposits are found in a narrow range between 0.024 and 0.031 mm,which is much lower than the effective grain size(d 10).  相似文献   

19.
An 82 cm core was collected from Qinghai Lake in the Qinghai-Xizang Plateau, China and sectioned in intervals of 1 cm for analysis of pigments (i. e. chlorophyll derivatives, carotenoids, myxoxanthophyll, oscillaxanthin) and210Pb.210Pb dating was used to establish the chronological sequence. The concentrations of myxoxanthophyll and oscillaxanthin from the cyanophytes increase with temperature. There are four peak values at 0–14 cm (present−1891a), 25 cm (1786a), 45 cm (1581a), 60 cm (1416a) representing four warm and low water level periods during the past 700 years. This was confirmed by the high concentration of carbonate and ∂13C in these stages. In these 700 years, there were also 4 periods of cold wet climate and high water level as indicated by the tree ring index and high value of native chlorophyll and high, variable CD/TC ratios. The project was supported by the Loess and Quaternary Research Lab, Academia Sinica.  相似文献   

20.
该文根据济南北跨新城区浅层地下水水文地质条件,对DRASTIC模型评价因子进行了适当改进,选取含水层埋深、有效降水入渗量、含水层介质类型、包气带介质类型、地形坡度、粘性土厚度、含水层渗透系数作为评价因子,在研究区1∶5万工程地质图的基础上,按照4 km×4 km方格的形式将研究区划分57个单元,最后用加权法计算地下水防污性综合指标,把研究区分为防污性较差区和防污性中等区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号