首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Algal biotechnology has advanced greatly in the past three decades. Many microalgae are now cultivated to produce bioactive substances. Odontella aurita is a marine diatom industrially cultured in outdoor open ponds and used for human nutrition. For the first time, we have systematically investigated the effects of culture conditions in cylindrical glass columns and fiat-plate photobioreactors, including nutrients (nitrogen, phosphorus, silicon, and sulfur), light intensity and light path, on O. aurita cell growth and biochemical composition (protein, carbohydrate, β-1,3-glucan, lipids, and ash). The optimal medium for photoautotrophic cultivation of O. aurita contained 17.65 mmol/L nitrogen, 1.09 mmol/L phosphorus, 0.42 mmol/L silicon, and 24.51 mmol/L sulfur, yielding a maximum biomass production of 6.1-6.8 g/L and 6.7-7.8 g/L under low and high light, respectively. Scale-up experiments were conducted with fiat-plate photobioreactors using different light-paths, indicating that a short light path was more suitable for biomass production of O. aurita. Analyses of biochemical composition showed that protein content decreased while carbohydrate (mainly composed of 15-1,3-glucan) increased remarkably to about 50% of dry weight during the entire culture period. The highest lipid content (19.7% of dry weight) was obtained under 0.11 mmol/L silicon and high light conditions at harvest time. Fatty acid profiles revealed that 80% were Cx4, C~6, and C20, while arachidonic acid and eicosapentaenoic acid (EPA) accounted for 1.6%-5.6% and 9%-20% of total fatty acids, respectively. High biomass production and characteristic biochemical composition profiles make O. aurita a promising microalga for the production ofbioactive components, such as EPA and D-1,3-glucan.  相似文献   

2.
Total lipid and fatty acid composition of eight strains of marine diatoms   总被引:3,自引:0,他引:3  
Fatty acid composition and total lipid content of 8 strains of marine diatoms (Nitzschia frustrula, Nitzschia closterium, Nitzschia incerta, Navicula pelliculosa, Phaeodactylum tricornutum, Synedra fragilaroides) were examined. The microalgae were grown under defined conditions and harvested at the late exponential phase. The major fatty acids in most strains were 14∶0 (1.0%–6.3%), 16∶0 (13.5–26.4%), 16∶1n−7 (21.1%–46.3%) and 20∶5n−3 (6.5%–19.5%). The polyunsaturated fatty acids 16∶2n−4, 16∶3n−4, 16∶4n−1 and 20∶4n−6 also comprised a significant proportion of the total fatty acids in some strains. The characteristic fatty acid composition of diatoms is readily distinguishable from those of other microalgal groups. Significant concentration of the polyunsaturated fatty acid 20∶5n−3 (eicosapentaenoic acid) was present in each strain, with the highest proportion in B222 (19.5%). Project supported by the Hi-Tech “863” Programs of the China Ministry of Science and Technology (863-819-02-01).  相似文献   

3.
Microalgal lipids are regarded as main future feedstock of biofuels for its higher efficiency of accumulation and sustainable production.In order to investigate the effect of various nitrogen to phosphorus ratios on cells growth,chlorophyll content and accumulation of lipids in Dunaliella tertiolecta,experiments were carried out in modified microalgal medium with inorganic nitrogen(nitrate-nitrogen) or organic nitrogen(urea-nitrogen) as the sole nitrogen source at initial N:P ratios ranging from 1:1 to 32:1.The favorable N:P of 16:1 in the nitrate-N or urea-N medium yielded the maximum cell density and specific growth rate.Decrease in chlorophyll content were observed at the N:P of 4:1 in both nitrate-N and urea-N cultures.It was also observed that the maximum lipids concentration was obtained at the N:P of 4:1 in both nitrate and urea nutrient medium.The lipid productivity and lipid content of cultures in the urea-N medium at the N:P of 4:1were markedly higher than those from cultures with other N:P ratios(p 0.05).The results of this work illustrate the possibility that higher ratios of nitrogen to phosphorus have enhancing effect on cells growth of D.tertiolecta.Conversely,higher lipid accumulation is associated with a decrease in chlorophyll content under lower ratios of nitrogen to phosphorus.The results confirm the hypothesis of this study that a larger metabolic flux has been channeled to lipid accumulation in D.tertiolecta cells when the ratios of nitrogen to phosphorus drop below a critical level.  相似文献   

4.
Stress state of microalgal cells is caused under unfavorable conditions such as disordered light regime and depleted nitrogen. The stress state can impair photosynthetic efficiency, inhibit cell growth and result in the accumulation of triacylglycerol(TAG) from protective mechanisms. Continuous light or nitrogen starvation was applied on microalgae and performed effectively on inducing TAG production. To evaluate the light regime effect on inducing TAG production, the effect of different light regimes on nitrogen-starved Isochrysis zhangjiangensis was investigated in this work. The continuous light and nitrogen starvation elevated TAG content of biomass by 73% and 193%, respectively. Furthermore, the TAG accumulation of I. zhangjiangensis cell under nitrogen starvation decreased under aggravated stress from continuous illumination. Our results demonstrated that culturing the cells with 14 L: 10 D light regime under nitrogen starvation is the optimal mode to achieve maximal accumulation of TAG. A recovery in light regime was necessary for I. zhangjiangensis cultivation.  相似文献   

5.
6.
Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments(raw-control,boiling and heating),and then analyzed for lipid content,lipid oxidation index,lipid classes and fatty acid composition.Results showed that boiling softened the hard starfish shells,thus facilitating the collection of starfish organs.As compared with raw organs,the boiled organs had lower water content and higher lipid content,possibly due to the loss of water-holding capacity caused by protein denaturation.Both boiling and heating increased the peroxide value(PV),thiobarbituric acid(TBA) value and carbon value(CV) of lipids.Despite slight increases in the content of complex lipids,associated lipid composition had no substantial variations upon boiling and heating.For simple lipids,the content of 1,2-diglyceride decreased in boiled and heated organs,with free fatty acids observed on thin layer chromatography(TLC).However,neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs,suggesting that these two treatments had no significant effects on complex lipids in starfish organs.Together,our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid(EPA)-bounded phospholipids.  相似文献   

7.
Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.  相似文献   

8.
Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.  相似文献   

9.
Lu  Lin  Wang  Jun  Yang  Guanpin  Zhu  Baohua  Pan  Kehou 《中国海洋湖沼学报》2017,35(2):303-312
Mass microalgal culture plays an irreplaceable role in aquaculture,but microalgal productivity is restricted by traditional autotrophic culture conditions.In the present study,a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea.The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen(C:N)ratios than those under autotrophic conditions.When the C:N ratio was 16,the optical density and biomass productivity were 3.7-and 5-fold higher than their corresponding values under autotrophic culture conditions,respectively.Moreover,T.chuii synthesized more polysaccharides and total lipids under mixotrophic conditions.In addition,T.chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions.At a C:N ratio of 16,the percentage of C16:0 and C18:1 reached 30.08%and 24.65%of the total fatty acid(TFA) content,respectively.These findings may provide a basis for largescale mixotrophic culture of T.chuii,as a potential bait-microalga.  相似文献   

10.
From March 2004 to February 2005,seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica(Reeve) were studied on the eastern coast of China in relation to the reproductive cycle and environment conditions(e.g.,temperature and food availability).Histological analysis as well as lipid and fatty acid analyses were performed on neutral and polar lipids of the gonad.Results showed that gametogenesis occurred in winter and spring at the expense of lipids previously accumulated in summer and autumn,whereas spawning occurred in summer(20.4-24.6℃).The seasonal variation in lipid content was similar to that of the mean oocyte diameter.In both neutral and polar lipids,the 20:5n-3 and 22:6n-3 levels were relatively higher than saturated fatty acids,and polyunsaturated fatty acids were abundant,with series n-3 as the predominant component.Seasonal variations in the 20:5n-3 and 22:6n-3 levels and the principal n-3 fatty acids were clearly related to the reproductive cycle.The ∑(n-3) and ∑(n-6) values were relatively high during January-May,and the associated unsaturation index was significantly higher than that in other months.The results suggest that fatty acids play an important role in the gametogenesis of F.mutica.  相似文献   

11.
Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30°C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237±0.026 g g−1 cell dry weight and 0.272±0.041 g L−1 when glucose was used as the carbon source, whereas the lipid content reached 0.287±0.018 g g−1 cell dry weight and 0.288±0.008 g L−1 when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L−1 gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.  相似文献   

12.
Phaeodactylum tricornutum is a potential livestock for the combined production of eicosapentaenoic acid (EPA) and fucoxanthin. In this study, six marine diatom strains identified as P. tricornutum were cultured and their total lipid, fatty acid composition and major photosynthetic pigments determined. It was found that the cell dry weight concentration and mean growth rate ranged between 0.24–0.36 g/L and 0.31–0.33/d, respectively. Among the strains, SCSIO771 presented the highest total lipid content, followed by SCSIO828, and the prominent fatty acids in all strains were C16:0, C16:1, C18:1, and C20:5 (EPA). Polyunsaturated fatty acids, including C16:2, C18:2, and EPA, comprised a significant proportion of the total fatty acids. EPA was markedly high in all strains, with the highest in SCSIO828 at 25.65% of total fatty acids. Fucoxanthin was the most abundant pigment in all strains, with the highest in SCSIO828 as well, at 5.50 mg/g. The collective results suggested that strain SCSIO828 could be considered a good candidate for the concurrent production of EPA and fucoxanthin.  相似文献   

13.
Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences,such as harmful algal blooms(HABs) and hypoxia.During the past two decades since the late 1990s,recurrent large-scale HABs(red tides)and an extensive hypoxic zone have been reported in the coastal waters adjacent to the Changjiang River estuary.To retrieve the history of eutrophication and its associated ecosystem changes,a sediment core was collected from the "red-tide zone" adjacent to the Changjiang River estuary.The core was dated using the~(210)Pb radioisotope and examined for multiple proxies,including organic carbon(OC),total nitrogen(TN),stable isotopes of C and N,and plant pigments.An apparent up-core increase of OC content was observed after the 1970s,accompanied by a rapid increase of TN.The concurrent enrichment of δ~(13)C and increase of the C/N ratio suggested the accumulation of organic matter derived from marine primary production during this stage.The accumulation of OC after the 1970 s well reflected the significant increase of primary production in the red-tide zone and probably the intensification of hypoxia as well.Plant pigments,including chlorophyll a,p-carotene,and diatoxanthin,showed similar patterns of variation to OC throughout the core,which further confirmed the important contribution of microalgae,particularly diatoms,to the deposited organic matter.Based on the variant profiles of the pigments representative of different microalgal groups,the potential changes of the phytoplankton community since the 1970s were discussed.  相似文献   

14.
Illuminating conditions are crucial factors affecting the microalgal growth and biosynthesis.The effects of illuminating spectral quality on the growth and bio-component production of Nannochloris oculata were investigated.The results indicated that a high proportion of Red-light enhanced the pigments and carbohydrate production but reduced those of the biomass and lipid.Mono-chromatic Blue-light has advantageous effects on lipid production compared with Red-and White-light.The optimal light spectrum for the protein production was the combination of Red-and Blue-light at a ratio of 4:3 or 5:2.Among the seven fatty acids identified from N.oculata,the contents of C16:0,C18:0,and C18:3(n-3)in the lipid were inhibited by the increased proportion of Red-light while those of C18:2(n-9),C16:2(n-6),and C20:0 were inhibited by Blue-light.Monochromatic Red-and Blue-light and their com-binations were proposed as a promising illuminating strategy for the large-scale cultivation aiming for various bio-components.  相似文献   

15.
The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.25% of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH 4 + -N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.  相似文献   

16.
Wang  Zhaohui  Wang  Chaofan  Wang  Maoting  Li  Weiguo  Zhong  Wencong  Liu  Lei  Jiang  Tao 《中国海洋湖沼学报》2022,40(6):2277-2291

Sediment samples were collected at 17 stations in the central Bohai Sea, China, and the diversity and community structure of eukaryotic microalgae were assessed by metabarcoding the V4 region of 18S rDNA. A total of 930 operational taxonomic units (OTUs) were detected for microeukaryotes, including 98 algal OTUs. The algal communities comprised 42 genera belonging to 19 classes of six phyla, and they were dominated by chrysophytes and dinoflagellates. Dinoflagellates were also the most diverse microalgal group. The nano-sized dinoflagellates Biecheleria halophila and Azadinium trinitatum occurred abundantly in the study area; however, they have not been reported previously, as they may be overlooked or misidentified in light microscopy. Many pico-sized chlorophytes were detected in the sediment samples. Sixteen of the detected OTUs were assigned to potentially harmful and/or bloom-forming microalgae, suggesting some potential risks of harmful algal blooms in the central Bohai Sea. The capacity of metabarcoding to detect morphologically cryptic and small species makes this method a sufficiently sensitive means of detection for assessing eukaryotic microalgae in sediments.

  相似文献   

17.
Zhang  Anqi  Liu  Honghan  Li  Chenhong  Chen  Changping  Liang  Junrong  Sun  Lin  Gao  Yahui 《中国海洋湖沼学报》2022,40(6):2401-2415

Toxic and harmful algal blooms are usually more frequent in mariculture areas due to the abundant trophic conditions. To investigate the relationship between toxic and harmful microalgae and environmental factors, we set up 12 stations near three mariculture regions (Gouqi Island, Sandu Bay, and Dongshan Bay) in the East China Sea. We collected samples from all four seasons starting from May 2020 to March 2021. We identified 199 species belonging to 70 genera, of which 38 species were toxic and harmful, including 24 species of Dinophyceae, 13 species of Bacillariophyceae, and 1 species of Raphidophyceae. The species composition of toxic and harmful microalgae showed a predominance of diatoms in the summer (August), and dinoflagellates in the spring (May), autumn (November), and winter (March). The cell densities of toxic and harmful microalgae were higher in summer (with an average value of 15.34×103 cells/L) than in other seasons, 3.53×103 cells/L in spring, 1.82×103 cells/L in winter, and 1.0×103 cells/L in autumn. Pseudonitzschia pungens, Prorocentrum minimum, Paralia sulcata, and Prorocentrum micans were the dominant species and were available at all 12 stations in the three mariculture areas. We selected 10 toxic and harmful microalgal species with frequency >6 at the survey stations for the redundancy analysis (RDA), and the results show that NO ?3 , water temperature (WT), pH, DO, and NO ?2 were the main factors on distribution of toxic and harmful microalgae. We concluded that the rich nutrient conditions in the East China Sea mariculture areas increased the potential for the risk of toxic and harmful microalgal bloom outbreaks.

  相似文献   

18.
Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones (zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid (PLFA) are more abundant in the site with short flooding period (zone 3) than in the site with long flooding period (zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis (PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis (RDA) showed that available nitrogen (AN), total nitrogen (TN) and soil organic matter (SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.  相似文献   

19.
The inhibitory effects of methanol extracts from the tissues of three macroalgal species on the growths of three marine red tide microalgae were assessed under laboratory conditions.Extracts of Sargassum thunbergii(Mertens ex Roth) Kuntz tissue had stronger inhibitory effects than those of either Sargassum pallidum(Turner) C.Agardh or Sargassum kjellmanianum Yendo on the growths of Heterosigma akashiwo(Hada) Hada,Skeletonema costatum(Grev.) Grev,and Prorocentrum micans Ehrenberg.Methanol extracts of S.thunbergii were further divided into petroleum ether,ethyl acetate,butanol,and distilled water phases by liquid-liquid fractionation.The petroleum ether and ethyl acetate fractions had strong algicidal effects on the microalgae.Gas chromatography-mass spectrometry analyses of these two phases identified nine fatty acids,most of which were unsaturated fatty acids.In addition,pure compounds of four of the nine unsaturated fatty acids had effective concentrations below 5 mg/L.Therefore,unsaturated fatty acids are a component of the allelochemicals in S.thunbergii tissue.  相似文献   

20.
Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analyzing vegetation succession. The vegetation changed from bare ground(10 years after the eruptions) with little plant cover and poor soil to monotonic grassland dominated by Polygonum sachalinense with undeveloped soil(33 years) and then to deciduous broad-leaved forest dominated by Populus maximowiczii with diverse species composition and well-developed soil(100 years). At three chronosequential sites, we evaluated the compositions of phospholipid fatty acids(PLFAs), carbon(C) and nitrogen(N) contents and the isotope ratios of C(δ13C) and N(δ15N) in the litter of two dominant species, Polygonum sachalinense and Populus maximowiczii. The C/N ratio, δ13C and δ15N in the litter of these two species were higher in the forest than that in the bare ground and grassland. The PLFAs gradually increased from the bare ground to the forest, showing that microbial biomass increased with the development of the soil and/or vegetation. The fungi-to-bacteria ratio of PLFA was constant at 5.3 ± 1.4 in all three sites, suggesting that fungi were predominant. A canonical correspondence analysis suggested that the PLFA composition was related tothe successional ages and the developing soil properties(P 0.05, ANOSIM). The chronosequential analysis effectively detected the successional changes in both microbial and plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号