首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Nutrient and eutrophication characteristics of the Dongshan Bay,South China   总被引:1,自引:0,他引:1  
We recorded NO 3-N, NO 2-N, NH 4-N, PO 4-P, SiO 3-Si, salinity, and temperature data at 10 stations in the Dongshan Bay in May, June, July, August, October, and November 2008, analyzing nutrient and eutrophication characteristics. The mean concentration of dissolved inorganic nitrogen(DIN) was 0.30–0.40 mg/dm 3; generally, NO 3-N was the main form in most areas. The mean concentrations of PO 4-P and SiO 3-Si were 0.040–0.060 mg/dm 3 and 1.00–1.50 mg/dm 3, respectively. We proved that the majority of the SiO 3-Si in the Dongshan Bay came from the Zhangjiang River, with some coming from the Bachimen Strait. DIN originated from both the Zhangjiang River and the Bachimen Strait. Most PO 4-P originated from the Bachimen Strait, and some came from the Zhangjiang River. We found that P was an overall limiting factor to the phytoplankton community in most of the Dongshan Bay, and that Si and N were in surplus. However, near the Bachimen Strait Si became a limiting factor, especially for diatoms, while P and N were in comparative surplus. We used a potential eutrophication assessment method to analyze eutrophication, and showed that the most serious eutrophication occurred near the Zhangjiang River estuary and near the Bachimen Strait. In 2008, DIN levels were four times higher than that in 1988; PO 4-P levels were threefold higher, while SiO 3-Si was approximately double. Dissolved nutrients increased between 1988 and 2008. DIN increased at the greatest rate comparing to PO 4-P and SiO 3-Si, thus the N/P and N/Si mol ratios increased. Further studies on the effects of high DIN concentrations on the phytoplankton communities and marine ecosystems of the Dongshan Bay are needed.  相似文献   

2.
Based on field data for nutrients collected on the continental shelf of the East China Sea (ECS) during summer 2006, the structure and variations of nutrients in every water mass related to the Taiwan Warm Current (TWC) were analyzed. The supplementary effect of nutrient of upwelling on harmful algal blooms (HABs) in the ECS was also estimated, based on upwelling data. Then the maintenance contribution of nutrient of upwelling to HABs was assessed. The results showed that N/P ratio is fairly low in both surface and deep layers of the TWC, which possibly controls nutrient structure of the HABs-frequently-occuring areas. In upwelling areas, the rate of phosphate (PO4-P) uptake exceeds that of nitrate (NO3-N) of the TWC. The TWC may relieve PO4-P limitation during the process of HABs. Furthermore, upwelling plays an important role in providing nutrients to HABs. After estimating nutrient fluxes (NO3-N, PO4-P, SiO3-Si) in the upwelling areas along a typical section (S07), the results showed that the nutrient uptake rate is the greatest at 10–20 m below euphotic zone, sustaining the ongoing presence of HABs. The uptake rate of PO4-P is the highest among dissolved inorganic nutrients. Therefore, upwelling is most likely the main source of PO4-P supply to HABs.  相似文献   

3.
To gain a better understanding of water quality and eutrophication, we investigated the seasonal and spatial distribution of water quality at 17 stations in the Guangzhou Sea Zone (GZSZ). Nutrients, chlorophyll-a (Chl-a), salinity, chemical oxygen demand, and other physical and chemical parameters were determined in February, May, August and October from 2005 to 2007. The concentrations showed ranges of 93.2–530.4 μmol/L for dissolved inorganic nitrogen (DIN), 0.62–3.16 μmol/L for phosphate (PO4-P) and 50–127 μmol/L for silicate (SiO3-Si). The results indicated that DIN was strongly influenced by domestic sewage coming from Guangzhou City and NO3-N was the main form of DIN in most areas, while concentrations of phosphate and silicate were generally controlled by Pearl River runoff, land-based sources along the land or islands, and algae assimilation. N/P ratios were very high in both dry season and wet season, and varied from 57 to 667, suggesting that P was potentially the most limiting nutrient in the GZSZ. The concentrations of Chl-a were 3–96 μg/L, and were highly correlated with the distribution characteristics of COD. The concentrations of nutrients have increased over the past two decades (1982–2007). This means it is necessary to control the input of nutrients to the GZSZ, especially that of phosphate.  相似文献   

4.
Both nitrate (NO3) and soluble reactive phosphate (PO43−) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity>30, NO3 concentration has shown an obvious increase, PO43− has not changed greatly and dissolved reactive silica (SiO32−) has deceased dramatically. An examination of the elemental ratio of NO3 to PO43− at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO43− in surface seawater, with salinity>22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO32−:PO43− ratio has undergone a reverse trend in this area. Based on the changes of SiO32−:PO43− and DIN:PO43− ratios, we can conclude that an overall historical change of SiO32−:DIN ratio has decreased in this area from the 1950–1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985–1986 to 69.8% during 2004–2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.  相似文献   

5.
The multi-level ditch system developed in the Sanjiang Plain, Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region. Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain. In this study, an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level. Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month), and TN, NO3 N, NH4 +-N, TP, and PO4 3−-P were analyzed. The results show that nutrient contents in water were higher in June and July, especially in July, the contents of TN and TP were 3.21 mg/L and 0.84 mg/L in field ditch, 4.04 mg/L and 1.06 mg/L in lateral ditch, 2.46 mg/L and 0.70 mg/L in branch ditch, 1.92 mg/L and 0.63 mg/L in main ditch, respectively. In August and September, the nutrient contents in the water were relatively lower. The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time, showing a remarkable impact of ditch system on river water environment. The nutrient transfer in ditch sediments could only be found in rainfall season. Nutrient contents in ditch sediment had effect on that in ditch water, but nutrients in ditch water and sediments had different origination. Ditch management in terms of the key factors is hence very important for protecting river water environment.  相似文献   

6.
Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, autumn to winter , and that the seasonal distributions and variations of the nutrients concentrations were mainly controlled by the river flow and were also related to the growth and decline of phytoplankton . The conservation of SiO3-Si and NO3-N in the estuary in the flood season was poorer than that in the dry season .. The behaviour of PO4-P in the estuary shows that aside from -biological removal, buffering of PCU-P is possible in the estuary . The highest monthly average concentrations and annual average concentrations in the river mouth were respectively 0.88 and 0.57 umol/L for PO4-P,191.5 and 96.2 umol/L for SiO3-Si, and 81.6 and 58.6 umol/L for NOs-N . The Changjiang's annual transports of PO4-P , SiO3-Si and NO3-N to the sea were about 1.4×104tons , 204.4×104 tons and 63.6×104  相似文献   

7.
Water samples were collected in 120 stations in the Bohai Sea of China to analyze the distribution of dissolved nutrients and assess the degree of eutrophication in August 2002. The result shows that the average concentration of DIN increased and the PO4-P concentration sharply decreased compared to the previous data of corresponding period. The high concentrations of DIN and PO4-P occurred in coastal waters, especially in the bays and some river estuaries, while the high concentrations of SiO3-Si in the surface and middle depth occurred in the central area of the Bohai Sea. The average ratio of DIN/ PO4-P was much higher than the Redfield Ratio (16:1). Apparently, PO4-P was one of the limiting nutrient for phytoplankton growing in the sea. The average concentrations of DON and DOP were higher than their inorganic forms. The results of eutrophication assessment show that 22.1% of all stations were classified as violating the concentration levels of the National Seawater Quality Standard (GB 3097-1997) for DIN and only 3.9% for PO4-P. The average eutrophication index in the overall area was 0.21±0.22 and the high values occurred in Bohai Bay, Liaodong Bay and near the Yellow River estuary. This means that the state of eutrophication was generally mesotrophic in the Bohai Sea, but relatively worse in the bays, especially some river estuaries.  相似文献   

8.
Comprehensive surveys were conducted in the Kocebu deep seamount and the M4 shallow seamount in the Western Pacific Ocean in March 2018 and May 2019,respectively.The distributions of nutrients in euphotic zone of the two seamount-areas were revealed,and the causative controlling factors were analyzed.Results show that the vertical distribution of nutrients in the two seamount-areas accorded with the general law of the oligotrophic ocean.The concentrations of NO_3-N,PO_4-P,and SiO_3-Si generally increased gradually with the increase of water depth,and they were extremely low in water layers within100 m.The area of high N02-N concentration well agreed with the Deep Chlorophyll Maximum Layer.On the other hand,the distribution of water masses and phytoplankton and hydrological conditions in the two seamount-areas were different,resulting in lower concentrations of NO_3-N,PO_4-P,and SiO_3-Si in the water layers below 100 m in the Kocebu seamount area than those in the M4 seamount area.In addition,N02-N was affected by the distribution of phytoplankton,and distributed mainly in the water layers of 150 and100 m.There was upwelling in the euphotic zone of M4 seamount area,causing accumulations of nutrients and phytoplankton around the seamount,forming a "seamount effect";however,no such an effect was found in Kocebu seamount area.Affected by the composition of biological community and the "seamount effect",the nitrogen limitation in the M4 seamount area was not significant,and the dissolved inorganic nitrogen(DIN):PO_4-P and SiO_3-Si:DIN were closer to the Redfield ratios.  相似文献   

9.
The distributions of SiO_3-Si, PO_4-P, NO_3-N and NO_2-N concentrations in the seawater, iceand snow from 82°45′21″W, 88°01′20″N to the North Pole are reported and the exchange of thenutrients among the seawater, ice and snow are discussed. The average concentrations of the nutrients inthe seawater near the North Pole were 4.9±2.4μmol/L for SiO_3-Si; 0.60±0.10μmol/L for PO_4-P,3.4±1.7μmol/L for NO_3-N and 0.13±0.04μmol/L for NO_2-N. The nutrient concentrations inthe ice and snow in the North Pole were 0.20 and 0.65μmol/L for SiO_3-Si; 0.22 and 0.25μmol/L forPO_4-P; 1.6 and 5.8μmol/L for NO_3-N, 0.19 and 0.15μmol/L for NO_2-N.  相似文献   

10.
Sishili Bay is the most important aquiculture and tourism area for the city of Yantai, China; however, red tides occurred frequently and have caused huge economic losses in this bay in recent years. To gain a better understanding of the local ecological environments in the bay, we conducted this research between 2003 and 2008 to analyze variations in nutrients and chlorophyll (chl-a) during high frequency red tide period (May to September). The results show that the chl-a concentration increased from 2.70 in 2003 to 7.26 mg/m3 in 2008, while the concentration of total inorganic nitrogen (TIN) and silicate (SiO3-Si) increased lineally from 5.18 and 1.45 μmol/L in 2003 to 18.57 and 9.52 μmol/L in 2008, respectively, and the annual phosphate (PO4-P) varied between 0.15 and 0.46 μmol/L. Special attention was given to a red tide in August 2007 occurred when water temperature was high and nutrient concentrations increased sharply because of a heavy rainfall. Overall, the results show the P limitation in Sishili Bay, and reveal that red tides were caused by eutrophication from terrestrial inputs and local warm weather, particularly during rainy periods. Therefore, to control red tide, greater efforts should be made to reduce sewage discharges into Sishili Bay, particularly during rainfall seasons.  相似文献   

11.
Water quality is critical to ensure that marine resources and the environment are utilized in a sustainable manner. The objective of this study is therefore to investigate the optimum placement of marine environmental monitoring sites to monitor water quality in Shanghai, China. To improve the mapping or estimation accuracy of the areas with different water quality grades, the monitoring sites were fixed in transition bands between areas of different grades rather than in other positions. Following bidirectional optimization method, first, 18 candidate sites were selected by filtering out specific site categories. Second, three of these were, in turn, eliminated because of the rule defined by the changes in the areas of water quality grades and by the standard deviation of the interpolation errors of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P). Furthermore, indicator kriging was employed to depict the transition bands between different water quality grades whenever new sampling sites were added. The four optimization projects of the newly added sites reveal that, all optimized sites were distributed in the transition bands of different water grades, and at the same time in the areas where the historical sites were sparsely distributed. New sites were also found in the overlap region of different transition bands. Additional sites were especially required in these regions to discriminate the boundaries of different water quality grades. Using the bidirectional optimization method of the monitoring sites, the boundaries of different water quality grades could be determined with a higher precision. As a result, the interpolation errors of DIN and PO4-P could theoretically decrease.  相似文献   

12.
To understand the responses of a freshwater ecosystem to the impoundment of the Three Gorges Reservoir (TGR), phytoplankton was monitored in the tributaries of the TGR area. From August 2010 to July 2011, algal species composition, abundance, chlorophyll a and other environmental parameters were investigated in the Gaolan River, which is a tributary of Xiangxi River. Thirty-one algal genera from seven phyla were identified. Results show that the lowest concentrations of total phosphorus (TP) and total nitrogen (TN) were 0.06 mg/L and 1.08 mg/L, respectively. The values of TP and TN exceeded the threshold concentration of the eutrophic state suggested for freshwater bodies. In the Gaolan River, the succession of phytoplankton showed clear seasonal characteristics. Different dominant species were observed among seasons under the control of environment factors. In spring and summer, the dominant species were Nitzschia sp. and Aphanizomenon flos-aquae (L.) Ralfs, the limiting nutrient was NO 3 ? -N, and the key environmental factor for phytoplankton population succession was water temperature (WT). In autumn and winter, the dominant species were A. flos-aquae and Chlorella sp., the limiting nutrient was PO 4 3? -P, and the key environmental factors were transparency and WT. This study illustrates the influence of physical and chemical factors on phytoplankton seasonal succession in a tributary of TGR since the downstream regions of Xiangxi River and Gaolan River became reservoirs after impoundment of the Three Gorges Dam. We suggest that this activity has significantly affected water quality in the dam area.  相似文献   

13.
Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.  相似文献   

14.
The distributions of N utilizing bacteria (denitrifying bacteria and ammonifying bacteria), P utilizing bacteria (organic phosphobacteria and inorganic phosphobacteria) and heterotrophic bacteria in the Changjiang Estuary, and the roles of main environmental factors in distributing bacteria, are explored with observations from two cruises in June and August 2006. Comparisons between the two important periods of initial hypoxia phase (June) and developed hypoxia phase (August) show differences in both bacterial distributions and the associated main environmental factors. First, the primary group of ammonifying bacteria has larger magnitude with spatial maximum value in the hypoxic stations related to sediment in August. The phosphobacterial abundance and detection rates in August are much lower than those in June, but the denitrifying bacterial abundance becomes greater in August. However, the difference of heterotrophic bacterial abundance between June and August is not obvious. Second, main environmental factors influencing bacteria vary from initial hypoxia phase to developed hypoxia phase. Two parameters (salinity and NO3 ?) in surface water and five environmental parameters (pH, salinity, PO4 3?, NO3 ? and temperature) in bottom water and surface sediment play major roles in the bacterial abundance in June, while different parameter combinations (salinity and PO4 ?) in surface water and different parameter combinations (DO, DOC, NO3 ?, PO4 3? and pH) in bottom water and surface sediment play major roles in August. Moreover, the bottom bacteria distributions in area south of 31°N are related to the position of the Taiwan Warm Current in June. The bacterial abundance and distribution may respond to the environmental change in the hypoxia processes of initial phase and developed phase. During the hypoxia processes, the whole structure of bacterial functional groups probably turns to different states, causing the recycling of nutrient regeneration and aggravating hypoxia regionally.  相似文献   

15.
Incubation experiments are carried out to study the exchange rates of dissolved inorganic nutrients including silicate, phosphate, ammonium, nitrite, and nitrate (vSiO3-Si, vPO4-P, vNH4-N, vNO2-N and vNO3-N) at the sediment-water interface in the Jiaozhou Bay. Major factors influencing the exchange rates are discussed in detail, which include the dissolved inorganic nutrient concentrations in porewater (Cpw), water and clay contents, and grain size of the sediments (CH2O, Cclay and GSsed). The results may provide insight into the dynamics of nutrient transport and the environmental capacity of nutrients in Jiaozhou Bay, and should be beneficial to solving the problems caused by excessive nutrient input this area.  相似文献   

16.
We evaluated the dietary protein requirements of juvenile turbot (Scophthalmus maximus L.) and their effects on aquatic quality. Five experimental diets were formulated containing 450, 480, 500, 520, and 540 g/kg. Each diet was randomly assigned to triplicate groups of juvenile turbot (mean initial body weight 34.5 ± 5.5 g) for 88 d. Both the weight gain ratio and feed efficiency increased with increasing dietary protein up to 500 g/kg, but no further improvement was detected when dietary protein levels were >500 g/kg. Protein intake and digestion increased with protein levels, while fecal nitrogen and nitrogen content in seawater increased only when dietary protein exceeded 500 g/kg. Protein digestibility was highest at intermediate dietary protein levels. Chemical oxygen demand, nitrite-nitrogen (NO2--N) and phosphatic-phosphor (PO43--P) levels increased in the rearing water as dietary protein levels increased. The optimum eco-nutrition level of dietary protein for juvenile turbot was 500 g/kg under the current experimental conditions. The diets containing 540 and 500 g/kg protein had similar growth rates and feed conversion ratios, but levels of ammonia (NH4+) and nitrogen were considerably higher in the water and feces, respectively, at the higher level of dietary protein. The difference in the pattern of change between body weight gain and ammonia concentration in water with increasing dietary protein is described by rhomb characteristics.  相似文献   

17.
Eutrophication, which is the enrichment of a water mass with inorganic and organic nutrients that support plant growth, is a key factor in stimulating phytoplankton growth. In this study, we determined the effects of various nitrogen sources, different nitrogen concentrations in the culture medium, and two culture methods on the growth of the green alga, Enteromorpha prolifera. The relationship between the specific growth rate of E. prolifera and NO3--N concentration was consistent with that estimated using the Monod equation (R2 = 0.9713, P < 0.01). In the NO3--N medium, the maximum specific growth rate was calculated to be 0.1634/d and the semi-saturation constant was calculated to be 16.86 μmol/L. Our results show that E. prolifera can effectively utilize NH4+-N, NO3--N, and NO2--N and urea-N in the range of 5 to 50 μmol/L. NH4+-N was preferentially assimilated by E. prolifera, and urea-N was favorable for long-term growth.  相似文献   

18.
Rainwater samples were collected in series in Qianliyan Island (southern Yellow Sea) and Shengsi Archipelago (East China Sea) between May 2000 and May 2002, chemical analysis for pH values,concentrations of heavy metals (Cu, Pb, Zn and Cd) and nutrients (NH4^-, NO3^-, PO43^-, SiO32^-) were performed.Results indicate that concentrations of most of the heavy metals and nutrients in rainwater show clear seasonal variation, i.e. high level in winter and low level in summer. Regionally, concentrations are higher in the southern Yellow Sea than in the East China Sea, but the annual input of heavy metals into oceans by wet deposition is similar in both stations. However, the input of nutrients by wet deposition in the East China Sea is 2-3 times higher than that in the southern Yellow Sea. In individual, Pb and PO4^3- are input to the sea mainly by dry deposition; whereas Cu, Zn, Cd and N compounds are input dominantly by wet deposition, the N/P ratios in the rainwater from two stations are much higher than those in seawater, showing a significant impact of atmospheric wet deposition on marine production and biogeochemical circulation of nutrients in these sea regions.  相似文献   

19.
The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH 4 + , NO 3 ? , NO 2 ? as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 μmol L?1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 μmol M2 S?1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I clean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.  相似文献   

20.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号