首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate experimentally the depositions of two contiguous debris flows flowing into a main river reach.The aim of the present experimental research is to analyze the geometry and the mutual interactions of debris flow deposits conveyed by these tributaries in the main channel.A set of 19 experiments has been conducted considering three values of the confluence angle,two slopes of the tributary,and three different triggering conditions(debris flows occurring simultaneously in the tributaries,or occurring first either in the upstream or in the downstream tributary).The flow rate along the main channel was always kept constant.During each experiment the two tributaries had the same slope and confluence angle.The analysis of the data collected during the experimental tests indicates that the volume of the debris fan is mainly controlled by the slope angle,as expected,while the shape of the debris deposit is strongly influenced by the confluence angle.Moreover,in the case of multiple debris flows,the deposit shape is sensitive to the triggering conditions.Critical index for damming formation available in literature has been considered and applied to the present case,and,on the basis of the collected data,considerations about possible extension of such indexes to the case of multiple confluences are finally proposed.  相似文献   

2.
Debris flows consist of grains of various sizes ranging from 10~(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.  相似文献   

3.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

4.
牛眠沟流域泥石流形成条件、发展趋势及其防治探讨   总被引:1,自引:0,他引:1  
汶川地震使牛眠沟流域变成了一个多泥石流灾害的区域,到目前为止,已经发生7次大规模泥石流灾害。经研究,该流域诱发泥石流灾害的3个基本条件非常发育,而目前正处于发展阶段,在震后5~10年内的雨季,极易发生危害性较大、冲击力较强的大规模降雨型泥石流。如果考虑直接利用主沟内沉积的泥石流堆积物,在主沟堆积区的中上游左右两侧修建约为沟宽一半的交替式拦挡土石坝、在中下游修建与沟宽大致相等的拦挡土石坝及在相邻两坝间修建与沟向相对且具有一定坡度斜坡的土木防治工程,可实现消能与耗能双重目的。  相似文献   

5.
The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called ’8.13’ Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the ’8.13’ Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated ’8.13’ Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.  相似文献   

6.
The spectacular scenery of Glacier National Park is the result of glacial erosion as well as post-glacial mass wasting processes. Debris flow magnitude and frequency have been established through extensive fieldwork across seven separate drainage basins in the eastern portion of the park. This paper summarizes the investigation of the hypotheses that debris flow distribution in the Glacier National Park, east of the Continental Divide is (a) not random; and Co) concentrated adjacent to the Continental Divide. The location of 2317 debris flows were identified and mapped from sixty-three 1-m resolution Digital Orthophoto Quarter Quadrangles and their spatial distribution was then analyzed using ArcView Spatial Analyst GIS software. The GIS analysis showed that the debris flows are not randomly distributed nor are they concentrated directly adjacent to the Divide. While the Continental Divide provides orographic enhancement of precipitation directly adjacent to the Divide, the debris flows are not concentrated there due to a lack of available weathered regolith. The most recent Little Ice Age glaciation removed the debris directly adjacent to the Divide, and without an adequate debris supply, these steep slopes experience few debris flows. Both abundant water and an adequate debris supply are necessary to initiate slope failure, resulting in a clustering of debris flows at the break in slope where valley walls contact talus slopes. A variety of summer storm and antecedent moisture conditions initiate slope failures in the Glacier National Park, with no distinct meteorological threshold. With over two million visitorsevery year, and millions of dollars of park infrastructure at risk, identifying the hazard of debris flows is essential to future park management plans.  相似文献   

7.
Shangyao valley is located in Jin’an village of Songpan in Sichuan. Many material sources are accumulated in valleys. The debris flow will be triggered by a rain storm with short-duration and strong intensity, which may threaten people’s lives and property in downstream. Based on the investigation,the formation conditions of debris flow and its dynamic characteristics are analyzed and its hazard assessment is investigated. Research shows that there is the potential cause of debris flow in Shangyao valley,which is of the middle risk class.  相似文献   

8.
It is of great significance for gully prevention and management to identify the potential sediment source of debris flow. Debris flow in a gully always originates from tributaries that have different gravity potential energies and sediment condition. In this study, tributaries of the Jiangjia Gully(JJG) in Yunnan province, China, are taken as the study area to determine the possible sediment sources of debris flow. It was found that tributaries with a high evolution index(EI, the integral of the hypsometric curve) always had high gravity potential energy, which favors the occurrence of landslide activity. Furthermore, the relationship between sediment distribution, gravity potential energy, and EI is compared, respectively. The results showed that the EI had a greater influence on the occurrence of landslides, and sediments were concentrated in tributaries with EI between 0.5 and 0.6. Accordingly, tributaries with EI 0.5 were identified as the sediment sources of debris flow. In addition, the shape of a tributary was related to EI and can reflect the condition of water and sediment storage.  相似文献   

9.
Debris flows can be extremely destructive because they can increase in magnitude via progressive entrainment. In this paper, a total of 18 landslide-type debris flows and 268 channelized debris flows in Wenchuan earthquake and Taiwan region, as well as other regions were collected to analyze the entrainment rate of debris flows in each triggering condition. Results show that there is a power relationship between volume of initial triggered mass and final deposited debris for landslide type debris flow. The debris flows during 2008 and 2013 in Wenchuan earthquake-region have smaller entrainment rate than that from 2001 t0 2009 in Taiwan. The entrainment rate of debris flow events from 2001 to 2009 in Taiwan shows a decaying tendency as elapsed time. Comparison of the entrainment rate in the two earthquake-hit regions with other regions proves that entrainment rate has a close relation with major sediment availability and secondary rainstorm conditions.  相似文献   

10.
Flexible net barriers are a new type of effective mitigation measure against debris flows in valleys and can affect the kinematic energy and mass of debris flows. Here, ten flume tests were performed to study the dynamic behaviours of debris flows with differences in volumes, concentrations (solid volume fraction), and travel distances after interception by a uniform flexible net barrier. A high-speed camera was used to monitor the whole test process, and their dynamic behaviours were recorded. A preliminary computational framework on energy conversion is proposed according to the deposition mechanisms and outflow of debris flow under the effects of the flexible net barrier. The experimental results show that the dynamic interaction process between a debris flow and the flexible net barrier can be divided into two stages: (a) the two-phase impact of the leading edge of the debris flow with the net and (b) collision and friction between the body of the debris flow and intercepted debris material. The approach velocity of a debris flow decreases sharply (a maximum of 63%) after the interception by the net barrier, and the mass ratio of the debris material being intercepted and the kinetic energy ratio of the debris material being absorbed by the net barrier are close due to the limited interception efficiency of the flexible net barrier, which is believed to be related to the flexibility. The energy ratio of outflow is relative small despite the large permeability of the flexible net barrier.  相似文献   

11.
Aeolian sand landforms in the Yarlung Zangbo River(YZR) valley are a special type of aeolian landform that has attracted the attention of many scholars. However, the spatial distribution as well as the formation mechanism of aeolian sand has rarely been reported with integrated studies. In this paper, for remote sensing interpretation, scanning electron microscopy(SEM), X-ray diffraction(XRD) and particle size distribution(PSD) methods were used to analyze the spatial distribution and the deposition characteristics of aeolian sand. Combined with wind data and topography, the main driving factors and the formation mechanism of aeolian sand landforms were also examined. In the middle reaches of the YZR valley, there is a total of 2324.43 km~2 of aeolian sand, especially on the north bank of the wide valleys. In different wide valleys, the aeolian sand landforms exhibit a decreasing trend from the upstream to the downstream regions in both the area and expansion rate of aeolian sand. The cyclonic vortexes generated by the westerly winds and glacial winds are the main driving factors for transporting alluvial sand to the riverbank areas to form aeolian dunes. There are three main types of sand dunes in the river valley: climbing dunes, lee dunes and circumfluent dunes. Climbing dunes and lee dunes are mostly located west of the Jiacha Gorge, and the circumfluent dunes are mostly located east of the Jiacha Gorge.  相似文献   

12.
泥石流危险范围预测模型及在昆明东川城区的应用   总被引:1,自引:0,他引:1  
结合泥石流危险范围模型实验数据,运用多元回归分析方法探讨了泥石流危险范围预测,并进行了误差分析。以昆明市东川城区后山3条泥石流沟为例,运用该模型对其危险范围进行了预测分析,为东川城区泥石流防灾提供了科学依据。  相似文献   

13.
Helong City is located in the northeastern Changbai Mountain with a poor geological environment, there often occur debris flows, collapses and landslides; especially debris flows restrict the local economic development. Based on fractal theory and the surveying data of 34 debris flows, the authors studied fractal feature of debris flow gully and its various situations of fractal dimensions in different observation scales. The nonlinear relation reveals the development of non-uniformity and self similarity of debris flow gully.  相似文献   

14.
Introduction The Himalaya is considered to be the youngest mountains on the earth, and is tectonically very active, and hence inherently (geologically) vulnerable to hazards. Extreme rainfall events, landslides, debris flows, torrents and flash floods due…  相似文献   

15.
Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.  相似文献   

16.
Helong City is located in the northeastern Changbai Mountain with a poor geological environment, there often occur debris flows, collapses and landslides; especially debris flows restrict the local economic development. Based on fractal theory and the surveying data of 34 debris flows, the authors studied fractal feature of debris flow gully and its various situations of fractal dimensions in different observation scales. The nonlinear relation reveals the development of non-uniformity and self similarity of debris flow gully  相似文献   

17.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   

18.
Introduction Landscape evolution in glaciated high mountains environment in southwestern China is undergoing the coupled processes of monsoon- induced denudation and active tectonic. The debris fan development, in particular sediment transfer, is most int…  相似文献   

19.
Debris flow fan affects the river profile and landscape evolution.The propagation of multiple debris flows along a river can cause inundation and breaching risk,which can be exemplified by the Min River after the Wenchuan earthquake,Sichuan province,China.In this work,large flume tests were conducted to examine the interactions between debris flows and water current with the fan geometry,momentum,runout distance,deposited width,the relative water level upstream and dominated stress.The results reveal that stony flow commonly travels at a high speed and forms a long rectangle shape fan,while the muddy flow generally travels at a low speed and forms a fan-shaped depositional area.The stony flow can block a river even when the momentum is close to the water current;the muddy flow can block a river when the momentum is lower than that of water current.In case of complete river damming,the relative water level upstream indicates that the inundation risk from the muddy flow damming river would be higher than the inundation risk of stony flow.The diversion ratio of muddy flow decreases as damming ratio.Comparison of dimensionless numbers reveals that stony flow is dominated by grain collision stress combined with turbulent mixing stress,while the muddy flow is dominated by viscous shear stress over friction stress.The fan geometry,damming ratio,diversion ratio,and the dominated stress all together indicate that stony flow strongly interacts with water current while the muddy flow does not.The results can be helpful for understanding the physical interactions between water current and various debris flows,and debris flow dynamics at the channel confluence area.  相似文献   

20.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号