首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

2.
The effects of changing salinity and nitrogen limitation on dimethylsulfoniopropionate(DMSP) and dimethylsulfide(DMS) concentrations were investigated in batch cultures of coastal diatom Skeletonema costatum,an ecologically important species.Changes in salinity from 20-32 caused no measurable variation in cell growth or culture yield,but increased intracellular DMSP per cell by 30%.Nitrogen limitation caused up to a two-fold increase in total DMSP per cell and up to a three-fold increase in DMS per cell.These changes in DMSP and DMS per cell in the Skeletonema costatum cultures with nitrogen limitation and changing salinity were primarily attributed to the physiological functions of DMSP as an osmolyte and an antioxidant.The data obtained in this study indicated that nitrogen limitation and salinity may play an important role in climate feedback mechanisms involving biologically derived DMS.  相似文献   

3.
Time-series of chlorophyll-a(CHL),a proxy for phytoplankton biomass,and various satellite-derived climate indicators are compared in a region of the Subantarctic Southern Ocean(40°-60°S,110°-140°E)for years 2012-2014.CHL reached a minimum in winter(June)and a maximum in late summer(early February).Zonal mean CHL decreased towards the south.Mean sea surface temperature(SST)ranged between 8℃and 15℃and peaked in late February.CHL and SST were positively correlated from March to June,negatively correlated from July to September.CHL and wind speed(WIND)were negatively correlated with peak WIND occurred in winter.Wind direction(WIRD)was mostly in the southwest to westerly direction.The Antarctic Oscillation index(AAO)and CHL were negatively correlated(R=−0.58),indicating that as synoptic wind systems move southwards,CHL increases,and conversely when wind systems move northwards,CHL decreases.A genetic algorithm is used to calibrate the biogeochemical DMS model’s key parameters.Under 4×CO2(after year 2100)Regional mean SST increases 12%-17%,WIND increases 1.2ms−1,Cloud Cover increases 4.8%and mixed layer depth(MLD)decreases 48m.The annual CHL increases 6.3%.The annual mean DMS flux increase 25.2%,increases 37%from day 1 to day 280 and decrease 3%from day 288 to day 360.The general increase of DMS flux under 4×CO2 conditions indicates the Subantarctic regional climate would be affected by changes in the DMS flux,with the potential for a cooling effect in the austral summer and autumn.  相似文献   

4.
Soil organic carbon (SOC) is a major component of the global carbon cycle and has a potentially large impact on the greenhouse effect. Paddy soils are important agricultural soils worldwide, especially in Asia. Thus, a better understanding of the relationship between SOC of paddy soils and climate variables is crucial to a robust understanding of the potential effect of climate change on the global carbon cycle. A soil profile data set (n = 1490) from the Second National Soil Survey of China conducted from 1979 to 1994 was used to explore the relationships of SOC density with mean annual temperature (MAT) and mean annual precipitation (MAP) in six soil regions and eight paddy soil subgroups. Results showed that SOC density of paddy soils was negatively correlated with MAT and positively correlated with MAP (P < 0.01). The relationships of SOC density with MAT and MAP were weak and varied among the six soil regions and eight paddy soil subgroups. A preliminary assessment of the response of SOC in Chinese paddy soils to climate indicated that climate could lead to a 13% SOC loss from paddy soils. Compared to other soil regions, paddy soils in Northern China will potentially more sensitive to climate change over the next several decades. Paddy soils in Middle and Lower Yangtze River Basin could be a potential carbon sink. Reducing the climate impact on paddy soil SOC will mitigate the positive feedback loop between SOC release and global climate change.  相似文献   

5.
Tidal data from Weizhou, Zhapo, and Shanwei stations between 1969 and 2010 and from five gauging stations in the western Pacific Ocean provided by PSMSL, and the global mean sea level data recorded between December 1992 and December 2010 by TOPEX and Jason satellites were compiled and analyzed. The results show that the perennial mean sea level near Weizhou Island is 211.7 cm(relative to the water gauge zero), and the relative mean sea level rising rate is 2.2 mm yr-1 from 1969 to 2010, which is consistent with the relative mean sea level rising rate recorded at other gauging stations in the western Pacific regions and with the global mean sea level rising rate. The absolute mean sea level rising rate at Weizhou Island is 3.0 mm yr-1 from 1993 to 2010, also conforming with the global mean sea level rising rate(3.1±0.4 mm yr-1) during the same time period. The highest annual tide level at Weizhou Island has a rising rate of 4.6 mm yr-1 and shows a 20-year quasi-periodic variation from 1966 to 2010. The primary cause of the mean sea level rising is global warming.  相似文献   

6.
The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentially affecting climate.The spatio-temporal distribution of satellite-derived chlorophyll_a(CHL)and aerosol optical depth(AOD)for the recent years(2011-2019)in the Eastern China Marginal Seas(ECMS)(25°-40°N,120°-130°E)are studied.The seasonal CHL peaks occurred during late April and the CHL distribution displays a clear zonal gradient.Elevated CHL was also observed along the northern and western coastlines during summer and winter seasons.Trend analysis shows that mean CHL decreases by about 10%over the 9-year study period,while AOD was higher in south and lower in north during summertime.A genetic algorithm technique is used to calibrate the key model parameters and simulations are carried out for 2015,a year when field data was available.Our simulation results show that DMS seawater concentration ranges from 1.56 to 5.88 nmol L?1 with a mean value of 2.76 nmol L?1.DMS sea-air flux ranges from 2.66 to 5.00mmol m?2 d?1 with mean of 3.80mmol m?2 d?1.Positive correlations of about 0.5 between CHL and AOD were found in the study region,with higher correlations along the coasts of Jiangsu and Zhejiang Provinces.The elevated CHL concentration along the west coast is correlated with increased sea-water concentrations of DMS in the region.Our results suggest a possible influ-ence of DMS-derived aerosol in the local ECMS atmosphere,especially along the western coastline of ECMS.  相似文献   

7.
Dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP pools of these two marine phytoplankton species.Axenic laboratory cultures of the two marine algae were tested for DMSP production and its conversion into DMS.The results demonstrated that both algal species could produce DMS,but the average concentration of DMS per cell in S.trochoidea(12.63 fmol/L) was about six times that in P.minimum(2.01 fmol/L).DMS and DMSP concentrations in algal cultures varied significantly at different growth stages,with high release during the late stationary growth phase and the senescent phase.DMS production induced by three salinities(22,28,34) showed that the DMS concentrations per cell in the two algal cultures increased with increasing salinity,which might result from intra-cellular DMSP up-regulation with the change of osmotic stress.Our study specifies the distinctive contributions of different physiological stages of marine phytoplankton on DMSP and DMS production,and clarifies the influence of salinity conditions on the release of DMS and DMSP.As S.trochoidea and P.minimum are harmful algal bloom species with high DMS production,they might play an additional significant role in the sulfur cycle when a red tide occurs.  相似文献   

8.
Dimethylsulfide in the South China Sea   总被引:1,自引:0,他引:1  
INTRODUCTIONGreateffortsweredevotedrecentlytostudyingdimethylsulfide(DMS)distributioninseawater,asitaccountsforthemajorpartofthesulfurfluxfromtheoceanstotheatmosphere.Moreover,itsoxidationproductsintheatmospheremayinfluenceenvironmentalacidificationand…  相似文献   

9.
Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.  相似文献   

10.
CDntnbutionNo.3236fromtheInstituteofthenology,ChinaseAcadeInyofSdenas.KeyprojeCt396MandProjeCt4M76274supp0rtedbyNSFC,andabosupportedbypnsident'sboofCh1nereAedernyofSdenas.IwnODUruONThemonsoonisacirculationfeaturethatisplanetaryinscaleandhasanidentiliablesignalregardingitSsubsequentintensitysomeninemonthspriortotheaCtivestageofthesummrmonsoon(WbsterandYang,l992,Vemekar,l994).Furthertnre,thernagnitudeofthemons00n'svariabilityissubstantialandidentifiableoveralargearmindudingthePadficd…  相似文献   

11.
12.
INTRODUCTIONThemonsoonhasacirculationfeaturethatisplanetaryinscaleandanidentifiablesignalregardingitssubsequentintensitysomeninemonthspriortotheactivestageofthesummermonsoon(WebsterandYang,1992).Furthermore,themagnitudeofthemonsoonvariabilityissubstantia…  相似文献   

13.
A method is described for determining dimethylI sulfide (DMS) in seawater. DMS was first extractedfrom the seawater using organic reagent, then reverse-extracted by 5% HgCl2. In the laboratory DMS wasreleased by concentrated HCI and finally measured by GC-FPD. The limit of detection me O.05 ng ofS. Measurements of DMS along surface transects and on wtital profibe across the EaSt China Sca (Ers)continental sheif showed tha itS conodIations of S in the surface seawater ranged from 64-180 ng/L andthat itS vertical djstribuion was divided into 3 trpes. Model talculations of a stagnant film show a DMSflux of 10.6 umol/m_2d the air-sea inteIha.  相似文献   

14.
WRF模式作为一个中尺度气候模式,其分辨率从几米到几千公里,其自身的双向嵌套特征也为进行动力尺度下推提供了有力条件。本文利用WRF模式和传统的统计方法对研究区的气温进行尺度下推。首先,通过动力下推得到不同分辨率下的气温空间分布,并选取15个气象站点进行点对点验证,为了更明显观察不同尺度间的差异,对不同尺度的输出与ANUSPLIN插值结果进行比对,结果显示动力尺度下推中,分辨率越高模拟效果越好。其次,我们采用传统的统计下推方法,从27km下推到3km分辨率,并与WRF和ANUSPLIN插值在该尺度的结果进行对比分析,结果显示统计下推结果的趋势与动力下推的插值结果是一致的,但具有明显的马赛克效果,通过分析认为,这与统计方法的尺度下推只考虑高程信息的变化对气温的影响,而未考虑其他因素有关,如若在下推时加入更多的变量,如对温度有较大影响的坡度、坡向、土地覆被类型等因素,综合分析不同尺度之间的关系,会使下推结果有所改善。  相似文献   

15.
The Antarctic and Arctic are sensitive to global climate change; therefore, they are key regions of global climate change research. This paper, the progress in scientific investigations and research regarding the atmosphere in the polar regions over the last 30 years by Chinese scientists is summarized. Primary understanding of the relationship between the polar regions and global change, especially, the variations in time and space in the Antarctic and Arctic regions with respect to climate change is indicated. Operational weather forecasts for investigation of the polar regions have also been established. Moreover, changes in sea ice and their impact on the atmosphere of polar regions have been diagnosed and simulated. Parameterization of the atmospheric boundary layer of different underlying layers and changes in the atmospheric ozone in the polar region has also been experimented. Overall, there has been great progress in studies of the possible impact of changes in the atmospheric environment of polar regions on circulation in East Asia and the climate of China.  相似文献   

16.
In order to discuss the characteristics of sea ice change of strong signal area on Antarctic and Arctic and the correlation between the thermal state on the land surface of Tibetan Plateau and the atmosphere circulation of North Hemisphere or the climate changes in China, and to study the feedback mechanism among “three-pole” factors, the earlier stage “three-pole” strong signal characteristics by using statistic methods such as teleconnection,which affect the regional climate changes in China and East Asia. The cross-correlation feature and coupling effect between ice caps of North and South pole and water-thermal state on Tibetan Plateau surface are discussed as well. The contribution of three-pole's earlier stage factors to China's summer climate change and the influence of its dynamic structure are compared here. The formation mechanisms of global climate change and regional climate change of China are investigated from the aspect of qualitative correlation mode of global sea-land-air-ice.  相似文献   

17.
在气候变化和全球治理挑战日益严峻的背景下,CO2排放及代价评估日益受到学术界和决策者的关注。当前全球范围包括联合国政府间气候变化专门委员会(IPCC)评估在内的几乎所有研究都是基于全球平均CO2浓度来驱动气候模式的,但基于全球CO2平均分布设定开展模拟影响评估在学术界多有争议。首先,综述了大气CO2非均匀分布的证据,评述了大气CO2浓度非均匀分布与地表升温过程的互馈机制。其次,从自然和人为2个维度,梳理了大气CO2浓度非均匀分布形成的原因,并评估了其对地表升温的影响。最后,评述了当前大气CO2浓度非均匀分布研究中存在的问题,进一步展望了其发展趋势,为把握全球与区域碳排放现状及气候变化影响提供科学判据。  相似文献   

18.
" La Madre " is a kind of upper atmospheric air current, and occurs as " warm phase " and " cold phase " in the sky of Pacific Ocean alternately. There exists this phenomenon, called " Oscillation Decade in the Pacific" (ODP), for 20-30 years. It is concerned with 60 year cycle of the tides. Lunar oscillations explain an intriguing 60-year cycle in the world's temperature. Strong tides increase the vertical mixing of water in the oceans, drawing cold ocean water from the depths to surface, where it cools the atmosphere above. The first strong seismic episode in China was from 1897 to 1912; the second to the fifth was the in1920-1937, 1946-1957, 1966-1980, 1991-2002, tsrectruely. The alternative boundaries of "La Madre " warm phase and cold phase were in 1890, 1924, 1946 and 2000, which were near the boundaries of four strong earthquakes. It indicated the strong earthquakes closedly related with the substances' motion of atmosphere, hydrosphere and lithosphere, the change of gravity potential, and the exchange of angular momentum. The strong earthquakes in the ocean bottom can bring the cool waters at the deep ocean up to the ocean surface and make the global climate cold, the earthquake, strong tide and global low temperature are close inrelntion for each othen.  相似文献   

19.
全球气候变化背景下,“一带一路”沿线国家农田生态系统脆弱性直接影响着所在国家或地区的粮食安全问题。本文基于农田生态系统总初级生产力(GPP),使用定量的脆弱性评价方法,系统分析了“一带一路”沿线国家农田生态系统脆弱性的空间分布特征及其对气候变化的响应。结果表明:① “一带一路”沿线国家农田生态系统脆弱性普遍处于较高的程度,77.1%的农田生态系统表现为中度和重度脆弱,且农田生态系统脆弱性呈现出明显的空间分异格局,中亚、西亚和蒙古脆弱性较高,中国、东南亚和南亚的脆弱性处于中等水平,俄罗斯、独联体和中东欧脆弱性较低;② 1980年以来“一带一路”沿线农田生态系统暖干化趋势明显,暖干化区域面积占64.06%,暖干化是“一带一路”沿线国家农田生态系统气候变化的主要特征;③ 农田生态系统脆弱性由低到高的气候变化区依次为暖湿区、冷湿区、暖干区、冷干区。暖湿区农田生态系统脆弱性最低,而冷干区农田生态系统脆弱性最高。气温和降水的变化及其耦合关系控制着农田生态系统脆弱性程度,其中降水变化趋势是影响农田生态系统脆弱性的重要因子。本研究为“一带一路”沿线国家应对和解决粮食安全问题,促进农业可持续发展,为加强各国之间的农业国际合作提供科学依据和有益参考。  相似文献   

20.
"La Madre" is a kind of upper atmospheric air current, and occurs as "warm phase" and "cold phase" in the sky of Pacific Ocean alternately. There exists this phenomenon, called "Oscillation Decade in the Pacific" (ODP), for 20~30years. It is concerned with 60 year cycle of the tides. Lunar oscillations explain an intriguing 60-year cycle in the world's temperature. Strong tides increase the vertical mixing of water in the oceans, drawing cold ocean water from the depths to surface, where it cools the atmosphere above. The first strong seismic episode in China was from 1897 to 1912; the second to the fifth was the in1920-1937, 1946-1957, 1966-1980, 1991-2002, tsrectruely. The alternative boundaries of"La Madre" warm phase and cold phase were in 1890, 1924, 1946 and 2000, which were near the boundaries of four strong earthquakes. It indicated the strong earthquakes closedly related with the substances' motion of atmosphere, hydrosphere and lithosphere, the change of gravity potential, and the exchange of angular momentum. The strong earthquakes in the ocean bottom can bring the cool waters at the deep ocean up to the ocean surface and make the global climate cold. the earthquake, strong tide and global low temperature are close inrelntion for each othen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号