首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.  相似文献   

2.
An ancient landslide, situated in Deqin County, Yunnan Province, China, was used to investigate the reactivation by water infiltration. This study considers the infiltration process and landslide stability using finite-element method(FEM)-based models. The results show that the reactivation of old landslide deposit was triggered by the long-term leakage of diversion ditch before October 2012, and the reactivation was triggered again by the intense rainfall on 7-9 October 2012. The old cracks, which formed in the earlier reactivation of landslide, played a key role for the rainfall infiltration. They offered a preferential path for much more rainfall to infiltrate fast into deep soil, and caused wetting front to move down faster in landslide. The old slip zone with lower permeability was another important factor to cause the infiltrated water to accumulate and form a high pore water pressure above slip zone. Then the high pore water pressure decreased the shear strength of slip zone and triggered the reactivation of the old landslide deposit again.  相似文献   

3.
降雨过程中降雨强度的变化会影响土体渗透率及饱和过程, 从而改变土体的力学性质, 影响泥石流起动模式及破坏规模。为探究不同降雨模式对震后泥石流起动机制的影响, 自制了小比例模型槽, 结合可控雨型的降雨模拟系统, 进行了人工降雨诱发泥石流的室内模型试验; 基于不同降雨模式下泥石流的起动过程分析, 对坡体内部含水率和孔隙水压力的变化规律进行了研究。研究结果表明: 递增型降雨模式下泥石流发生突然, 呈整体滑坡转化为泥石流起动模式, 坡体破坏规模最大; 递减型降雨模式下表现为后退式溃散失稳起动模式; 均匀型降雨模式下则表现为溯源侵蚀起动模式; 中峰型降雨模式下以局部滑坡转化为泥石流起动模式; Ⅴ型降雨模式下则由坡面侵蚀加剧转化为泥石流启动模式, 破坏规模最小。研究结果可以为九寨沟地区泥石流的预报预警提供参考。   相似文献   

4.
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China, respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident: (i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply (e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to 0.090 kPa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow. (ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7 - 8 times greater than that in the source area.  相似文献   

5.
Rainfall is an important factor to trigger the debris flow.Numerical simulation on the responses of slopes and the initiation of debris flow under rainfall was processed by using the software FLAC2D based on the soil parameters in Weijia Gully,Beichuan County,Sichuan Province,China.The effects of the slope angle,rainfall intensity,soil parameters on the developments of the stress and pore pressure and deformation of the slope were studied.It indicates that large displacements of the slope are mainly located near the slope toe.With the increase of the rainfall intensity the stability of the slope decreases and so the debris-flow is easy to occur.  相似文献   

6.
When water penetrates into soil,interstitial air can become trapped by the infiltrating water. Neglecting the effect of air ventilation could cause deviations in the predicted pore water pressure and the associated effective stress. This study aims at the effect of air ventilation on the coupled hydromechanical responses in homogeneous soil during infiltration. A schematic concept of infiltration conditions(open-and closed-valve) in homogeneous soil is proposed for investigating their impacts on the pore water pressure and effective stress. Experiments of vertical soil column filled with Ottawa sand(ASTM C778 20/30) were designed for two types of air ventilation(namely, open and closed infiltration). The evolution of pore water pressure at the cylinder bottom was recorded, and served as a benchmark problem for evaluating the coupled hydro-mechanical response. Coding with the commercial software,GeoStudio, was employed for the dynamic behaviors of pore-water and-air pressures as well as theevolving effective stress. It was found in both the experiments and numerical investigations that the infiltration condition plays a crucial role for the ascending rate of pore water pressure as well as the associated effective stress. These results illustrate the inevitable impacts of the air ventilation conditions on the mechanical properties of the soil during infiltration.  相似文献   

7.
Seepage-induced fines migration under rainfall infiltration is a main cause leading to shallow failures in loose colluvial slopes. To describe the full process of fines migration within unsaturated soils during rainfall infiltration and the associated hydro-mechanical behaviors, a seepage-erosion-deformation coupled formulation is proposed in this paper. The governing equations proposed are implemented into a finite element code and used to investigate the influences of skeleton deformation on the rainfall infiltration process through unsaturated soil columns. The numerical results were presented in detail for a better understanding of the rainfall-induced fines migration process within unsaturated soils. Further, the obtained results are integrated into an infinite slope model for slope stability analysis. The results show that, the skeleton deformation will affect the rainfall infiltration rate and hence the timing of slope failures; meanwhile their influences are more evident if the fines deposition process is taken into account. Moreover, the slope stability could be reduced gradually due to the soil strength loss along with loss of fine particles. Therefore, particular attentions should be paid to analyzing the stability of soil slopes susceptible to internal erosion.  相似文献   

8.
《山地科学学报》2020,17(10):2577-2590
Based on the principle of saturated infiltration and the Green-Ampt model, an unsaturated infiltration model for a soil slope surface was established for either constant moisture content, or depth-varying moisture content and the slope. Infiltration parameters in the partially saturated slope were revealed under sustained rainfall. Through analysis of the variation of initial moisture content in the slope, the ponding time, infiltration depth, and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration. There is no ponded water on the surface of the slope under sustained low-intensity rainfall. The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation, the soil cohesion and rainfall intensity under sustained rainfall. More short-term slope failures can occur with the decrease of cohesion of the soil of the slope. The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope. Then, best-fit curves of the infiltration rate, ponding time, and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents. And the slope failure time is roughly uniform when subject to a rainfall intensity I5 mm/h.  相似文献   

9.
以黄冈地区青石镇政府后山堆积层滑坡为例,在分析了其工程地质特征及地质结构特征的基础上,采用有限元法研究了非饱和土瞬态体积含水量及孔隙水压力的分布,采用考虑孔隙水压力的Janbu法分析计算了降雨对堆积层滑坡安全系数的影响。研究结果表明:①降雨入渗导致坡体孔隙水压力升高,滑面抗剪强度降低,安全系数也随之逐渐降低,其中在降雨前期,两侧的抗剪强度下降速率比中部快,而到了后期中部的抗剪强度下降速率明显快于两侧;②安全系数变化表现为前19 d以0.008/d的速率缓慢下降,19~30 d以0.03/d的速率缓慢下降,30 d以后下降速度降低,至36 d之后不再发生变化,其中在0~11 d两侧抗剪强度变化对滑坡整体稳定性变化的贡献比中部大,19~36 d中部抗剪强度变化对滑坡整体稳定性变化的贡献要比两侧大;③降雨入渗过程中,地下水从坡体表层和两侧流向坡体中部,负孔压区面积向中部不断压缩,中部地下水变化受到两侧及上层的制约,体积含水量及孔隙水压力变化相对滞后;④该滑坡的防治重点是做好降雨前期坡体后缘地下水截流以及前缘地下水排泄工作,同时,做好地表排水,减少降雨入渗。   相似文献   

10.
The initiation mechanism of debris flow is regarded as the key step in understanding the debris-flow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particle accumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.  相似文献   

11.
The landslide hazards occurring in the complex geological genesis accumulation body are usually controlled by the coupling action of many internal and external factors. Therefore, this paper takes the dam-front Danbo accumulation body landslide of Yangfanggou hydropower station on the Yalong River as the geological prototype, and discusses the process and mechanism of slope stability degradation under the combined action of rainfall and slope construction. Based on the detailed understanding of the basic characteristics of the accumulation body, the development characteristics of the landslide and the construction situation of the slope engineering, the study conducted correlation analysis between rainfall and landslide displacement, the physical and mechanical tests of all types of rocksoil masses, and the numerical simulation testing of seepage field variation of the landslide section. It is found that the special slope structure and material composition of the old landslide accumulation layer on the upper part of the Danbo accumulation body are the internal factors for the occurrence of thrust loadinduced landslide, and the construction of the slope engineering not only creates free space conditions for sliding, but also provides channels for the infiltration of rainfall into the slope after confluence, which is an external factor that caused the mechanical properties of the sliding zone soil to gradually weaken from the trailing edge to the leading edge. The geomechanical model of such landslide is that the active section of the trailing edge produces the "source of force", the transition section of the middle section affects the occurrence of sliding, and the anti-sliding section of the leading edge controls the occurrence of landslide hazards. The results of this research provide not only a useful supplement to the theory of landslide formation mechanisms but also a scientific basis for guiding the prevention and control of similar hazards.  相似文献   

12.
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography (ERT), Terrestrial Laser Scanning (TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part (0~41 m) of the landslide was greater than in the central-front part (41~84 m) and (2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure: (1) gully erosion at the slope surface; (2) shallow sliding failure; (3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement (using traditional methods) indicated that long duration light rainfall (average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding (30.09 mm/d) during the critical failure sub-phase (EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.  相似文献   

13.
含优势渗流层边坡在降雨入渗的作用下其渗流场往往具有较高的不确定性,这给边坡的稳定性评价带来困难,通常采用概率的方法解决此类问题。针对含优势渗流层边坡降雨入渗下的可靠度问题,通过将应力分析中的点估计-有限元法引入到边坡渗流-稳定性分析,提出了考虑优势渗流层渗透特性不确定性的渗流概率分析和边坡可靠度分析方法;其次以广西某含碎石夹层土坡为例,分析了降雨入渗下碎石夹层的优势渗流效应及渗流概率,并基于此开展了该边坡降雨入渗下的可靠度分析。结果表明:①含优势渗流层边坡雨水沿优势渗流层渗入坡体内部的深度显著高于沿坡面渗入的深度;优势渗流层渗透特性的不确定性对渗流结果的影响较大,使得边坡稳定性分析具有较强的不确定性;②随着雨水入渗持时的增加,含优势渗流层边坡不同滑动面的失效概率总体呈现增加趋势,最危险滑动面的位置不断向边坡下部演化;依托工程滑动面位置的预测结果与工程实际吻合;③提出的概率分析方法适用于分析含优势渗流层边坡降雨入渗影响下的稳定性问题,而且具有计算量小的优势,可作这类边坡可靠度分析的一种新方法。   相似文献   

14.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

15.
Assessing the slope deformation is significant for landslide prediction. Many researchers have studied the slope displacement based on field data from the inclinometer in combination with complicated numerical analysis. They found that there was a shear zone above the slip surface, and they usually focused on the distribution of velocity and displacement within the shear zone. In this paper, two simple methods are proposed to analyze the distribution of displacement and velocity along the whole profile of a slope from the slip surface to the slope surface during slow movement. In the empirical method, the slope soil above the shear zone is assumed as a rigid body. Dual or triple piecewise fitting functions are empirically proposed for the distribution of velocity along the profile of a slope. In the analytical method, the slope soil is not assumed as a rigid body but as a deformable material. Continuous functions of the velocity and displacement along the profile of a slope are directly obtained by solving the Newton's equation of motion associated with the Bingham model. Using the two proposed methods respectively, the displacement and velocity along the slope profiles of three slopes are determined. A reasonable agreement between the measured data and the calculated results of the two proposed methods has been reached. In comparison with the empirical method, the analytical method would be more beneficial for slope deformation analysis in slope engineering, because the parameters are material constants in the analytical solution independent of time t, and the nonlinear viscosity of the soil can be considered.  相似文献   

16.
A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.  相似文献   

17.
为了及时有效地应对各种突发性环境污染事故,有必要开发一种简单实用、适于各类型污染物的场地污染数学模型。通过污染事故发生后污染物在包气带、饱和带迁移转化的概化,建立了污染物运移的自由入渗模型以及降雨入渗模型并给出各自相应的解析解。无降雨时,考虑污染物在重力作用下随包气带向下渗透的作用,建立一维垂直入渗模型。有降雨时,考虑污染场地(包气带)中污染物迁移和转化的对流作用、扩散作用及挥发、生物降解、吸附、根系吸收等作用,建立包气带剖面二维溶质运移模型和饱和带平面二维溶质运移数学模型。建模过程中,假定降雨量的平均分布及土壤质地、水力参数以及有机物成分、种类均相同,同时假定污染物与多孔介质间的作用为线性吸附,植物根系对污染物的吸附遵循一级动力学。基于模型的解析解,实现案例的模拟计算。模拟结果表明:该模型具有适用范围广、模拟高效快捷等优点,能够较准确预测污染发生后污染物在土壤中的动向、到达饱和带的时间以及饱和带中污染物的迁移情况。  相似文献   

18.
Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the Yindongzi gully in Dujiangyan City, Sichuan province, China with scaled-down model experiments. We set rainfall intensity and slope angle as dominating parameters and carried out 20 scaled-down model tests under artificial rainfall conditions. The experiments set four slope angles(32°, 34°, 37°, 42°) and five rainfall intensities(60 mm/h, 90 mm/h, 120 mm/h, 150 mm/h, and 180 mm/h) treatments. The characteristic variables in the experiments, such as, rainfall duration, pore water pressure, moisture content, surface inclination, and volume were monitored. The experimental results revealed the failure mode of loose slope material and the process of slope debris flow initiation, as well as the relationship between the surface deformation and the physical parameters of experimental model. A traditional rainfall intensity-duration early warning model(I-D model) was firstly established by using a mathematical regression analysis, and it was then improved into ISD model and ISM model(Here, I is rainfall Intensity, S is Slope angle, D is rainfall Duration, and M is Moisture content). The warning model can provide reliable early warning of slope debris flow initiation.  相似文献   

19.
Landslides are natural disasters which can pose a serious threat to human and property in many areas around the world. The Transient Rainfall Infiltration and Grid-based Regional Slope-stability (TRIGRS) model was used to investigate the rainfall-induced shallow landslides in a forested mountain region, Korea. Various input data for TRIGRS model include time-varying rainfall, topographic characteristics, soil depth, material strength, and hydraulic properties. A series of calculations were conducted in determining the slope stability over the Jangheung region in Korea during the storm occurred on August 6, 1998. The results show that TRIGRS model captured about 64.1% of landslides that were extracted from the IKONOS2 imageries. The model demonstrated how the factor of safety changed with time during a storm considering both the transient and spatial responses of pore water pressure in its slope stability calculation.  相似文献   

20.
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo-mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon 0.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号