首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
本利用Kent和Gunn提供的COMA团天区414个星系的视向速度资料,以及关于团成员的统计判别结果,对COMA团进行了动力学方面的讨论。分析表明COMA团不存在显动力学效应的整体转动。利用King-Michie模型拟合得到COMA团的核半径为5。'2(相当于210kpc,取H0=50km·s^-1·Mpc^-1),特征速度弥散度为935km·s^-1。从动力学模型的角度来看,COMA团有较为  相似文献   

2.
经典造父变星的银河系运动学研究   总被引:2,自引:0,他引:2  
朱紫 《天体物理学报》1999,19(3):272-280
利用视向速度资料和依巴谷星表的自行资料,研究了经典造父变星的银河系运动学问题。采用Ogorodnikov-Milne三维运动学模型,获得银河系旋转速度V0=240.5±10.2km/s(取太阳至银心距离为8.5kpc)。同时发现,在太阳附近沿银河系旋转方向存在一种收缩运动,其值(δVθ/δθ)/R=-2.60±1.07km s^-1kpc^-1。本分析了产生这种收缩运动的原因。另外,得出太阳运动  相似文献   

3.
利用紫金山天文台青海站的 13.7 m毫米波望远镜,对 Orion A分子云中的 OMC-3区域,进行了较高分辨率的13CO(J=1-0)和C18O(J=1-0)分子辐射的成图观测.给出了该分子云中13CO和 C18O云核分布的整体结构和平均物理参数.观测发现,该分子云的13CO和 C18O的云核中心分别与最年轻的天体-Class 0类源 MMSI, MMS4,MMS6和MMS7,MMS8;MMS9成协.此外,通过分析OMC-3整个区域的速度场结构,发现沿 C18O和13CO云核方向从南到北有一个~ 1.7km/s的速度场梯度,而分子云的红、蓝移团块则分别趋于云的北部和南部.并对OMC-3区的恒星形成特征进行了讨论.  相似文献   

4.
利用视向速度资料和依巴谷星表的自行资料,研究了经典造父变星的银河系运动学问题.采用Ogorodnikov-Milne三维运动学模型,获得银河系旋转速度V0=240.5±10.2km/s(取太阳至银心距离为8.5kpc)同时发现,在太阳附近沿银河系旋转方向存在一种收缩运动,其值((V(/(()/R=-2.60±1.07kms-1kpc-1.本文分析了产生这种收缩运动的原因.另外,得出太阳运动速度S=18.7±0.86km/s向点=54.4°±2.9°=+26.6°±2.6°  相似文献   

5.
我们从对Orion-KL星云中OH1665MHz脉泽的单基线干涉观测的分析中,提出一种新的外流模型,即多重分离的旋转膨胀环.这种模型与观测结果是一致的.通过对24km单基线观测得到的19个OH1665MHz脉泽斑点的相对位置图进行分析、统计、拟合和计算,得到这19个OH1665MHz脉泽斑点分别分布在三个旋转膨胀环上.这三个旋转膨胀环的视距分别为3".81,5".87,6".0;对应的环半径分别为1742,2720,2766AU;径向膨胀速度分别为7.07,16.4,26.4kms-1;旋转运动的切向线速度分别为1.55,1.23,1.21kms-1.  相似文献   

6.
利用紫金山天台青海站的13.7m毫米波望远镜,对OrionA分子云中的OMC-3区域,进行了较高分辨率的^13CO(J=1-0)和C^18O(J=1-0)分子辐射的图观测,给出了该分子云中^13CO和C^18O的云核中心分别与最年龄的天体-Class0类源MMSI,MMS4,MMS6和MMS7,MMS8,MMS9成协,此外,通过分析OMC-3整个区域的速度场结构,发现沿C^18O和^13CO云核  相似文献   

7.
本用球对称扰动模型导出了星系暗晕的平均密度与形成时间的关系,并由此估算银河系的形成时间tv,我们把球状星团的年龄作为银河系年龄tG的代表。则tG+tV是宇宙年龄,对Ωλ=0,0.07和0.8的平坦宇宙模型,本计算并讨论了能与它相洽的哈毂常数的范围,结果表明,若哈勃常数大到80km·s^-1·Mpc^-1左右,引入宇宙常数并不一定能解决宇宙年龄的矛盾。  相似文献   

8.
本文给出用北京天文台2.16m光学望远镜观测的超新星1994I的光球相光谱。这些光谱表现出类似于Ic型超新星1987M的特征。我们用蒙特卡罗光谱合成模型对4月10日的光谱做了拟合。采用Nomoto等人C+O模型的元素丰度及修改过的W7密度结构,计算的光谱与观测的光谱符合得相当好。计算得到4月10日,超新星的光球速度约为1000km/s,其黑体温度约为8000K。另外,我们的光谱拟合可以为C+O星作为Ic型超新星的前身星提供证据。  相似文献   

9.
本用团分析法分别对距离类D=5及D=6的Abell-ACO团的二维分布进行了分析,分析的目的是探讨星系团分布中可能存在的超大尺度结构,分析结果表明,富星系团分布中的确存在尺度〉100h^-1Mpc的超大尺度结构,本的分析为超大尺度结构的存在提供了又一支持。  相似文献   

10.
一个小质量恒星形成区的物理和动力学性质   总被引:1,自引:0,他引:1  
利用VLA的观测,我们在猎户座分子云区,发现了11个小质量分子云浓度核。它们的平均有效半径为0.03pc,平均质量为3.5M⊙,分布在呈丝状母云南北走向的轴线上,在浓核区3'的范围内,测到有5kms^-1pc^-1的速度梯度。一个可能的解释是这个核区的慢速转旋。根据我们的NH3(1,1)的观测资料,并与尘埃的毫米波连续辐射和红外辐射比较,我们认为这个区域的大部浓核是还没有星核的年轻分子云核,正处于  相似文献   

11.
We have studied the poor southern cluster of galaxies S639. Based on new Strömgren photometry of stars in the direction of the cluster, we confirm that the Galactic extinction affecting the cluster is large. We find the extinction in Johnson B to be AB =0.75±0.03. We have obtained new photometry in Gunn r for E and S0 galaxies in the cluster. If the Fundamental Plane is used for determination of the relative distance and the peculiar velocity of the cluster, we find a distance, in velocity units, of (5706±350) km s−1, and a substantial peculiar velocity, (839±350) km s−1. However, the colours and the absorption line indices of the E and S0 galaxies indicate that the stellar populations in these galaxies are different from those in similar galaxies in the two rich clusters Coma and Hydra I. This difference may severely affect the distance determination and the derived peculiar velocity. The data are consistent with a non-significant peculiar velocity for S639 and the galaxies in the cluster being on average 0.2 dex younger than similar galaxies in Coma and Hydra I. The results for S639 caution that some large peculiar velocities may be spurious and caused by unusual stellar populations.  相似文献   

12.
The Tully–Fisher relationship (TFR) has been shown to have a relatively small observed scatter of ∼±0.35 mag implying an intrinsic scatter < ±0.30 mag. However, when the TFR is calibrated from distances derived from the Hubble relation for field galaxies scatter is consistently found to be ±0.64 to ±0.84 mag. This significantly larger scatter requires that intrinsic TFR scatter is actually much larger than ±0.30 mag, that field galaxies have an intrinsic TFR scatter much larger than cluster spirals, or that field galaxies have a velocity dispersion relative to the Hubble flow in excess of 1000 km s−1. Each of these potential explanations faces difficulties and contradicted by available data and the results of previous studies. An alternative explanation is that the measured redshifts of galaxies are composed of a cosmological redshift component predicted from the value of the Hubble constant and a superimposed intrinsic redshift component previously identified in other studies. This intrinsic redshift component may exceed 5000 km s−1 in individual galaxies. In this alternative scenario a possible value for the Hubble constant is 55–60 km s−1 Mpc−1.  相似文献   

13.
We study the A1831 cluster within the framework of our program of the investigation of galaxy clusters with bimodal velocity distributions (i.e., clusters where the velocities of subsystems differ by more than Δ cz ∼ 3000 km/s).We identify two subsystems in this cluster: A1831A (cz = 18970 km/s) and A1831B (cz = 22629 km/s) and directly estimate the distances to these subsystems using three methods applied to early-type galaxies: the Kormendy relation, the photometric plane, and the fundamental plane. To this end, we use the results of our observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data adopted from the SDSS DR6 catalog. We confirmed at a 99% confidence level that (1) the two subsystems are located at different distances, which are close to their Hubble distances, and (2) the two subsystems are located behind one another along the line of sight and are not gravitationally bound to each other. Both clusters have a complex internal structure, which makes it difficult to determine their dynamical parameters. Our estimates for the velocity dispersions and masses of the two clusters: 480 km/s and 1.9 × 1014 M for A1831A, 952 km/s and 1.4 × 1015 M for A1831B should be views as upper limits. At least three spatially and kinematically distinct groups of galaxies can be identified in the foreground cluster A1831A, and this fact is indicative of its incomplete dynamical relaxation. Neither can we rule out the possibility of a random projection. The estimate of the mass of the main cluster A1831B based on the dispersion of the line-of-sight velocities of galaxies is two-to-three times greater than the independent mass estimates based on the total K-band luminosity, temperature, and luminosity of the X-ray gas of the cluster. This fact, combined with the peculiarities of its kinematical structure, leads us to conclude that the cluster is in a dynamically active state: galaxies and groups of galaxies with large line-of-sight velocities relative to the center of the cluster accrete onto the virialized nucleus of the cluster (possibly, along the filament directed close to the line of sight).  相似文献   

14.
Using a large (14 857), homogenously selected sample of cluster galaxies identified in the Sloan Digital Sky Survey Data Release 4, we investigate the impact of cluster membership and local density on the stellar mass–gas phase metallicity relation (MZR). We show that stellar metallicities are not suitable for this work, being relatively insensitive to subtle changes in the MZR. Accurate nebular abundances can be obtained for 1318 cluster galaxies in our sample and we show that these galaxies are drawn from clusters that are fully representative of the parent sample in terms of mass, size, velocity dispersion and richness. By comparing the MZR of the cluster galaxies with a sample of control galaxies matched in mass, redshift, fibre covering fraction and rest-frame   g − r   colour cluster galaxies are found to have, on average, higher metallicities by up to 0.04 dex. The magnitude of this offset does not depend strongly on galactic half-light radius or cluster properties such as velocity dispersion or cluster mass. The effect of local density on the MZR is investigated, using the presence of a near neighbour and both two- and three-dimensional density estimators. For all three metrics, it is found that the cluster galaxies in locally rich environments have higher median metallicities by up to ∼0.05 dex than those in locally poor environments (or without a near neighbour). Control (non-cluster) galaxies at locally high densities exhibit similar metal enhancements. Taken together, these results show that galaxies in clusters are, on average, slightly more metal rich than the field, but that this effect is driven by local overdensity and not simply cluster membership.  相似文献   

15.
We present an analysis of the chiral property of 667 spiral and barred spiral galaxies in the Local Supercluster (radial velocity <3 000 km s−1). The arms of a galaxy (spiral or barred spiral) can be distinguished according to their orientation (leading or trailing) relative to the direction of the rotation. We use environment of each galaxy as a subsample in order to study the chiral property of galaxies. In addition, equatorial position angle distributions of leading and trailing arm galaxies are studied. We classify our database according as their morphology, diameters, radial velocities, axial ratios and magnitudes. The distribution of trailing and leading arm galaxies in the Local Supercluster is found homogeneous. A significant dominance of either trailing or leading structures is noticed within the Virgo cluster region, suggesting that the aggregation of these structures might have already started there. The rotation axes of the galaxies in the Virgo cluster is found to lie in the equatorial plane. Chirality of galaxies is found strong for the subsamples that showed a random alignment in the equatorial position angle distribution. Possible explanations of the results will be presented.  相似文献   

16.
赵君亮 《天文学进展》2007,25(3):206-214
对星系团各类分层效应的有关问题做了概要的评述,包括成员星系在位置空间和(或)速度空间中的形态分层、光度(质量)分层和元素丰度分层的表现形式和探测途径,分层效应可能的形成机制及其对星系和星系团的结构和演化的影响。  相似文献   

17.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters (n≥200) than the large stellar velocity dispersion subsample.  相似文献   

18.
We investigate the distribution and velocity field of galaxies situated in a band of 100 by 20 degrees centered on M87 and oriented along the Local supercluster plane. Our sample amounts 2158 galaxies with radial velocities less than 2000 km s?1. Of them, 1119 galaxies (52%) have distance and peculiar velocity estimates. About 3/4 of early-type galaxies are concentrated within the Virgo cluster core, most of the late-type galaxies in the band locate outside the virial radius. Distribution of gas-rich dwarfs with MHI >M* looks to be insensitive to the Virgo cluster presence. Among 50 galaxy groups in the equatorial supercluster band 6 groups have peculiar velocities about 500–1000 km s?1 comparable with virial motions in rich clusters. The most cryptic case is a flock of nearly 30 galaxies around NGC4278 (Coma I cloud), moving to us with the mean peculiar velocity of ?840 km s?1. This cloud (or filament?) resides at a distance of 16.1 Mpc from us and approximately 5 Mpc away from the Virgo center. Galaxies around Virgo cluster exhibit Virgocentric infall with an amplitude of about 500 km s?1. Assuming the spherically symmetric radial infall, we estimate the radius of the zero-velocity surface to be R0 = (7.0±0.3) Mpc that yields the total mass of Virgo cluster to be (7.4 ± 0.9)× 1014M in tight agreement with its virial mass estimates. We conclude that the Virgo outskirts does not contain significant amounts of dark mater beyond its virial core.  相似文献   

19.
We present kinematic parameters and absorption line strengths for three brightest cluster galaxies, NGC 6166, 6173 and 6086. We find that NGC 6166 has a velocity dispersion profile which rises beyond 20 arcsec from the nucleus, with a halo velocity dispersion in excess of 400 km s−1. All three galaxies show a positive and constant h 4 Hermite moment. The rising velocity dispersion profile in NGC 6166 thus indicates an increasing mass-to-light ratio. Rotation is low in all three galaxies, and NGC 6173 and 6086 show possible kinematically decoupled cores. All three galaxies have Mg2 gradients similar to those found in normal bright ellipticals, which are not steep enough to support simple dissipative collapse models, but these could be accompanied by dissipationless mergers which would tend to dilute the abundance gradients. The [Mg/Fe] ratios in NGC 6166 and 6086 are higher than that found in NGC 6173, and if NGC 6173 is typical of normal bright ellipticals, this suggests that cDs cannot form from late mergers of normal galaxies.  相似文献   

20.
Stellar abundance pattern of n-capture elements such as barium is used as a powerful tool to infer how the star formation proceeded in dwarf spheroidal (dSph) galaxies. It is found that the abundance correlation of barium with iron in stars belonging to dSph galaxies orbiting the Milky Way, i.e., Draco, Sextans, and Ursa Minor have a feature similar to that in Galactic metal-poor stars. The common feature of these two correlations can be realized by our in homogeneous chemical evolution model based on the supernova-driven star formation scenario if dSph stars formed from gas with a velocity dispersion of ∼ 26 km s-1. This velocity dispersion together with the stellar luminosities strongly suggest that dark matter dominated dSph galaxies. The tidal force of the Milky Way links this velocity dispersion with the currently observed value ≲ 10 km s-1 by stripping the dark matter in dSph galaxies. As a result, the total mass of each dSph galaxy is found to have been originally ∼ 25 times larger than at present. In this model, supernovae immediately after the end of the star formation can expel the remaining gas over the gravitational potential of the dSph galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号