首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 720 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We present the results of our photoelectric observations of HD 51585 (OY Gem), a B[e] star with an infrared excess and a candidate for protoplanetary nebulae, obtained with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute in 1992–2005. The star exhibited rapid irregular brightness variations with amplitudes from We present the results of our photoelectric observations of HD 51585 (OY Gem), a B[e] star with an infrared excess and a candidate for protoplanetary nebulae, obtained with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute in 1992–2005. The star exhibited rapid irregular brightness variations with amplitudes from in the V band to in U band within the observing season as well as slow systematic variations with amplitudes from in the V band to in the U band and with a quasi-period of ∼2800 days. The B-V color index varied within and did not follow the slow systematic brightness variations, while U-B correlated with the U brightness and varied between at maximum light and at minimum light. Our low-resolution spectroscopy performed in 1994–2005 has revealed significant variability of the Balmer and Paschen hydrogen emission lines as well as the He I and O I lines. Equivalent widths are given for the H I, He I, O I, and Fe II lines; a correlation has been found between the star’s photometric variability and the hydrogen line intensities. Our joint analysis of the photometric and spectroscopic data suggests that variations in a strong stellar wind are responsible for the variability of the star. Original Russian Text ? V.P. Arkhipova, N.P. Ikonnikova, G. V. Komissarova, V. F. Esipo, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 9, pp. 662–671.  相似文献   

10.
In a recent paper Ballersteros and Ragnisco (1998) have proposed a new method of constructing integrable Hamiltonian systems. A new class of integrable systems may be devised using the following sequence: , where A is a Lie algebra is a Lie–Poisson structure on R 3, C is a Casimir for is a reduced Poisson bracket and (A, ▵) is a bialgebra. We study the relation between a Lie-Poisson stucture Λ and a reduced Poisson bracket , which is a key element in using the Lie algebra A to constructing this sequence. New examples of Lie algebras and their related integrable Hamiltonian systems are given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
13.
A linear correlation between the ratio of the[CII( $^{\text{2}}$ P A linear correlation between the ratio of the[CII( P P )] line intensity to the [ CO(J:1 →0)] line emission, I /I and the equivalent width (EW) is found, over the range 2–71 ? in EW, for a sample of 21late-Type= galaxies. The latter is comprised of an optically selected sample of 12 normal Virgo Cluster spiral galaxies with [CII] detections obtained by us with ISOLWS, plus nine late-Type= galaxies with higher star formation rates (SFRs), for which [CII] data and, especially, EW data are available in the literature. As a result we infer I /I to be a reliable tracer of the current mass-normalized global SFR for non-starburst spiral galaxies. Moreover, the ratio of the [CII] line to the total far-infrared (FIR) continuum intensity, I /I , is found to decrease from ∼0.5% to ∼0.1% with decreasing SFR which we propose is due to a `[CII]-quiet' component of I from dust heated by the general interstellar radiation field (ISRF). The more `quiescent' galaxies in the sample have values of I /I different from those observed in `compact' Galactic interstellar regions. Their [CII]-emission is interpreted to be dominated by diffuse regions of the interstellar medium (ISM). For normal `star-forming' galaxies the diffuse component of the [CII] emission is estimated to account for at least 50% of the total. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Wheatland  M.S. 《Solar physics》2002,208(1):33-42
A model is presented to explain the observed frequency distribution of flare energies, based on independent flaring at a number of distinct topological structures (separators) within active-region magnetic fields. The model is a modification and generalization of a recent model due to Craig (2001), and reconciles that model with the observed flare waiting-time distribution, and the observed absence of a flare waiting-time versus energy relationship. The basic assumptions of the model are that flares of energy E 2 occur at separators of length , and that the frequency of flaring at a separator is defined by the Alfvén transit time of the structure. To reproduce the observed distribution of flare energies the model requires a probability distribution P( ) –1 of separator lengths within active regions. This prediction of the model is in principle testable. A theoretical origin for this distribution is also discussed.  相似文献   

15.
16.
17.
In this paper two sets of improved approximate expressions of emissivity , absorptivity , effective temperature Teff, and frequency of peak brightness _p of gyrosynchrotron radiation are presented respectively for the ranges from 5 to 10 and 10 to 100 of harmonic numbers s(= /_B). The expressions are designed for the range from 20° to 80° of viewing angle , and the range 2 to 7 of electron energy spectral index . They are expressed by a power-law function in which the indexes are fitted by polynomial expressions of . Their statistical errors are, respectively, 24% and 32% for and for and 28% for . Their accuracies are much better than those of linear fitting of the power-law index.  相似文献   

18.
19.
In this part we determine the value ofS 1, and in terms of the canonical variables of H. Poincaré. A complete solution of the auxiliary system of equations generated by the Hamiltonian is presented.  相似文献   

20.
Approximation formulas are found for and , wherex(t) satisfies ,x(0)=x 0,x(1)=x 1. The results are applied to an example of two-body motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号