首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
We present a collation of the available data on the opening angles of jets in X-ray binaries, which in most cases are small (≲10°). Under the assumption of no confinement, we calculate the Lorentz factors required to produce such small opening angles via the transverse relativistic Doppler effect. The derived Lorentz factors, which are in most cases lower limits, are found to be large, with a mean >10, comparable to those estimated for active galactic nuclei (AGN) and much higher than the commonly assumed values for X-ray binaries of 2–5. Jet power constraints do not, in most cases, rule out such high Lorentz factors. The upper limits on the opening angles show no evidence for smaller Lorentz factors in the steady jets of Cygnus X-1 and GRS 1915+105. In those sources in which deceleration has been observed (notably  XTE J1550−564  and Cygnus X-3), some confinement of the jets must be occurring, and we briefly discuss possible confinement mechanisms. It is however possible that all the jets could be confined, in which case the requirement for high bulk Lorentz factors can be relaxed.  相似文献   

3.
We investigate the linear theory of Kelvin–Helmholtz instability at the interface between a partially ionized dusty outflow and the ambient material analytically. We model the interaction as a multifluid system in a planar geometry. The unstable modes are independent from the charge polarity of the dust particles. Although our results show a stabilizing effect for charged dust particles, the growth time-scale of the growing modes gradually becomes independent of the mass or charge of the dust particles when the magnetic-field strength increases. We show that growth time-scale decreases with increasing the magnetic field. Also, as the mass of the dust particles increases, the growth time-scale of the unstable mode increases.  相似文献   

4.
We study the linear theory of Kelvin–Helmholtz instability in a layer of ions and neutrals with finite thickness. In the short wavelength limit the thickness of the layer has a negligible effect on the growing modes. However, perturbations with wavelength comparable to layer’s thickness are significantly affected by the thickness of the layer. We show that the thickness of the layer has a stabilizing effect on the two dominant growing modes. Transition between the modes not only depends on the magnetic strength, but also on the thickness of the layer.  相似文献   

5.
6.
7.
8.
9.
10.
In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend – notably into the timing properties – the previously published 'unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and 'relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested.  相似文献   

11.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

12.
A spatially unresolved velocity feature, with an approaching radial velocity of  ≈100 km s−1  with respect to the systemic radial velocity, in a position–velocity array of [O  iii ] 5007-Å line profiles is identified as the kinematical counterpart of a jet from the proplyd LV 5 (158–323) in the core of the Orion nebula. The only candidate in Hubble Space Telescope ( HST ) imagery for this jet appears to be a displaced, ionized knot. Also an elongated jet projects from the proplyd GMR 15 (161–307). Its receding radial velocity difference appears at  ≈80 km s−1  in the same position–velocity array.
A 'standard' model for jets from young, low-mass stars invokes an accelerating, continuous flow outwards with an opening angle of a few degrees. Here an alternative explanation is suggested which may apply to some, if not all, of the proplyd jets. In this, a 'bullet' of dense material is ejected which ploughs through dense circumstellar ambient gas. The decelerating tail of material ablated from the surface of the bullet would be indistinguishable from a continuously emitted jet in current observations.  相似文献   

13.
14.
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+, CS and H2CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+, as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model.  相似文献   

15.
16.
17.
The Herschel Space Observatory is well suited to address several important questions in star‐ and planet formation, as is evident from its first year of operation. This paper focuses on observations of water, a key molecule in the physics and chemistry of star‐formation. In the WISH Key Program, a comprehensive set of water lines is being obtained with the HIFI and PACS instruments toward a large sample of well‐characterized protostars, covering a wide range of luminosities and evolutionary stages. Lines of H2O, CO and their isotopologues, as well as chemically related hydrides, [O I] and [C II] are observed. Together, the data determine the abundance of water in cold and warm gas, reveal the entire CO ladder up to 4000 K above ground, elucidate the physical processes responsible for the warm gas (passive heating, UV or X‐ray‐heating, shocks), quantify the main cooling agents, and probe dynamical processes associated with forming stars and planets (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Compact regions of enhanced HCO+ and NH3 emission have been detected close to a number of Herbig–Haro objects. An interpretation of these detections is the following: a transient clump within the molecular cloud has been irradiated by the shock that generates the Herbig–Haro object. The irradiation releases icy mantles from the grains within the transient clump and initiates a photochemistry. On the basis of this picture, we have developed an extensive chemical model which predicts that a wide range of species, other than NH3 and HCO+, should also be detectable. These include CH3OH, H2S, C3H4, H2CO, SO, SO2, H2CS and NS. The chemical effects should last ∼  104 yr  .  相似文献   

19.
Dense cores are the simplest star-forming sites that we know, but despite their simplicity, they still hold a number of mysteries that limit our understanding of how solar-type stars form. ALMA promises to revolutionize our knowledge of every stage in the life of a core, from the pre-stellar phase to the final disruption by the newly born star. This contribution presents a brief review of the evolution of dense cores and illustrates particular questions that will greatly benefit from the increase in resolution and sensitivity expected from ALMA.  相似文献   

20.
We have performed 3D numerical simulations of an over-pressurized Herbig–Haro-type jet which propagates into a sidestreaming environment. The interaction between the jet and the sidewind results in a perpendicular acceleration of the jet material, and a consequent curvature of the jet as it moves into the anisotropic medium. We find that an approximately steady configuration is achieved both for a sidewind that is perpendicular to the jet and for a sidewind inclined at 45° towards the jet source. The curvature obtained in both these models is consistent with analytic models of the jet/sidewind problem.   We have also calculated Hα maps, which show an emitting sheath around the upwind (with respect to the sidewind) side of the jet beam. This emitting sheath may explain part of the observed emission from curved stellar jets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号