首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Grain-by-grain analytical electron microscope analyses of two micrometeorites, or interplanetary dust particles (IDPs), of the chondritic porous subtype, show the presence of rare barite (BaSO4) and magnesium carbonate, probably magnesite. Salt minerals in chondritic porous (CP) IDPs give evidence for in situ aqueous alteration in their parent bodies. The uniquely high barium content of CP IDP W7029*C1 is consistent with barite precipitation from a mildly acidic (pH > ~5) aqueous fluid at temperatures below 417 K and low oxygen fugacity. The presence of magnesite in olivine-rich, anhydrous CP IDP W7010*A2 is evidence that carbonate minerals occur in both the chondritic porous and chondritic smooth subtypes of chondritic IDPs. Citing Schramm et al. (1989) for putative asteroidal-type aqueous alteration in IDPs and probable sources of chondritic IDPs, salt minerals in CP IDPs could support low-temperature aqueous activity in nuclei of active short-period comets.  相似文献   

2.
Abstract Reflectance spectra were collected from chondritic interplanetary dust particles (IDPs), a polar micrometeorite, Allende (CV3) meteorite matrix, and mineral standards using a microscope spectrophotometer. Data were acquired over the 380–1100 nm wavelength range in darkfield mode using a halogen light source, particle aperturing diaphrams, and photomultiplier tube (PMT) detectors. Spectra collected from titanium oxide (Ti4O7), magnetite (Fe3O4), and Allende matrix establish that it is possible to measure indigenous reflectivities of micrometer-sized (>5 μm in diameter) particles over the visible (VIS) wavelength range 450–800 nm. Below 450 nm, small particle effects cause a fall-off in signal into the ultraviolet (UV). Near-infrared (IR) spectra collected from olivine and pyroxene standards suggest that the ~1 μm absorption features of Fe-bearing silicates in IDPs can be detected using microscope spectrophotometry. Chondritic IDPs are dark objects (<15% reflectivity) over the VIS 450–800 nm range. Large (>1 μm in diameter) embedded and adhering single mineral grains make IDPs significantly brighter, while surficial magnetite formed by frictional heating during atmospheric entry makes them darker. Most chondritic smooth (CS) IDPs, dominated by hydrated layer silicates, exhibit generally flat spectra with slight fall-off towards 800 nm, which is similar to type CI and CM meteorites and main-belt C-type asteroids. Most chondritic porous (CP) IDPs, dominated by anhydrous silicates (pyroxene and olivine), exhibit generally flat spectra with a slight rise towards 800 nm, which is similar to outer P and D asteroids. The most C-rich CP IDPs rise steeply towards 800 nm with a redness comparable to that of the outer asteroid object Pholus (Binzel, 1992). Chondritic porous IDPs are the first identified class of meteoritic materials exhibiting spectral reflectivities (between 450 and 800 nm) similar to those of P and D asteroids. Although large mineral grains, secondary magnetite, and small particle effects complicate interpretation of IDP reflectance spectra, microscope spectrophotometry appears to offer a rapid, nondestructive technique for probing the mineralogy of IDPs, comparing them with meteorites, investigating their parent body origins, and identifying IDPs that may have been strongly heated during atmospheric entry.  相似文献   

3.
The chondritic‐porous subset of interplanetary dust particles (CP‐IDPs) are thought to have a cometary origin. Since the CP‐IDPs are anhydrous and unaltered by aqueous processes that are common to chondritic organic matter (OM), they represent the most pristine material of the solar system. However, the study of IDP OM might be hindered by their further alteration by flash heating during atmospheric entry, and we have limited understanding on how short‐term heating influences their organic content. In order to investigate this problem, five CP‐IDPs were studied for their OM contents, distributions, and isotopic compositions at the submicro‐ to nanoscale levels. The OM contained in the IDPs in this study spans the spectrum from primitive OM to that which has been significantly processed by heat. Similarities in the Raman D bands of the meteoritic and IDP OMs indicate that the overall gain in the sizes of crystalline domains in response to heating is similar. However, the Raman ΓG values of the OM in all of the five IDPs clearly deviate from those of chondritic OM that had been processed during a prolonged episode of parent body heating. Such disparity suggests that the nonaromatic contents of the OM are different. Short duration heating further increases the H/C ratio and reduces the δ13C and δD values of the IDP OM. Our findings suggest that IDP OM contains a significant proportion of disordered C with low H content, such as sp2 olefinic C=C, sp3 C–C, and/or carbonyl contents as bridging material.  相似文献   

4.
We performed chemical, mineralogical, and isotopic studies of the first interplanetary dust particles (IDPs) collected in the stratosphere without the use of silicone oil. The collection substrate, polyurethane foam, effectively traps impacting particles, but the lack of an embedding medium results in significant particle fragmentation. Two dust particles found on the collector exhibit the typical compositional and mineralogical properties of chondritic porous interplanetary dust particles (CP‐IDPs). Hydrogen and nitrogen isotopic imaging revealed isotopic anomalies of typical magnitude and spatial variability observed in previous CP‐IDP studies. Oxygen isotopic imaging shows that individual mineral grains and glass with embedded metal and sulfide (GEMS) grains are dominated by solar system materials. No systematic differences are observed in element abundance patterns of GEMS grains from the dry collection versus silicone oil‐collected IDPs. This initial study establishes the validity of a new IDP collection substrate that avoids the use of silicone oil as a collection medium, removing the need for this problematic contaminant and the organic solvents necessary to remove it. Additional silicone oil‐free collections of this type are needed to determine more accurate bulk element abundances of IDPs and to examine the indigenous soluble organic components of IDPs.  相似文献   

5.
Comets and the chondritic porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3–40 μm) reveal the presence of a warm (near-IR) featureless emission modeled by amorphous carbon grains. Broad andnarrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Feand 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IRspectra of CP IDPs dominated by GEMS (0.1 μm silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He+ ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%), however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISMMg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (~1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at ~1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at ~5-10 AU. Determining the relative abundance of amorphous and crystalline silicatesin comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.  相似文献   

6.
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 “Febo” in aerogel, which contains fine‐grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine‐grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Dark‐field imaging and multidetector energy‐dispersive X‐ray mapping were used to compare GEMS‐like‐objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS‐like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant, is present, consistent with ablation, melting, abrasion, and mixing of the SiOx aerogel with crystalline Fe‐sulfide and minor enstatite, high‐Ni sulfide, and augite identified by elemental mapping in the terminal particle. Thus, GEMS‐like objects in “caches” of fine‐grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.  相似文献   

7.
Unlocking the 3‐D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3‐D detail down to ~10 nm by exploiting phase contrast X‐ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10‐μm‐long porous IDP, consisting of two types of voids that are interconnected in 3‐D space. One is morphologically primitive and mostly submicron‐sized intergranular voids that are ubiquitous; the other is morphologically advanced and well‐defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3‐D morphologies but in 2‐D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron‐ and nanoporous aggregate of the sub‐μm grains or grain clumps that are delicately bound together frequently with little grain‐to‐grain contact in 3‐D space.  相似文献   

8.
Diagnostic infrared spectra of individual nanogram-sized interplanetary dust particles (IDPs) collected in the Earth's stratosphere have been obtained. A mount containing three crushed “chondritic” IDPs shows features near 1000 and 500 cm?1, suggestive of crystalline pyroxene, and different from those of crystalline olivine, amorphous olivine, or meteoritic clay minerals. The structural diversity of chondritic IDPs and possible effects of atmospheric heating must be considered when comparing this spectrum with astrophysical spectra of interplanetary and cometary dust. Transmission electron microscope (TEM) and infrared observations are also reported on one member of the rare subset of IDPs which resemble hydrated carbonaceous chondrite matrix material. The infrared spectrum of this particle between 4000 and 400 cm?1 closely matches that of the C2 meteorite Murchison. TEM observations suggest that this class of particles might serve as a thermometer for the process of heating on atmospheric entry.  相似文献   

9.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

10.
Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.  相似文献   

11.
Meteorites, generally 1 cm or larger in size that are believed to sample asteroids, and interplanetary dust particles (IDPs), generally 5–50 μm in size that are believed to sample both asteroids and comets, span the size range of the meteors. Thus, the physical properties of the meteorites and the IDPs are likely to constrain the properties of the meteors and their parent bodies. Measurements of the density, porosity, longitudinal and transverse speeds of sound, elastic modulus, and bulk modulus, as well as imaging of the internal structure by Computed Microtomography indicate that unweathered samples of chondritic meteorites are more porous and have lower sound velocities than compact terrestrial rocks. In general, the IDPs are even more porous than the chondritic meteorites. The impact energy per unit target mass required to produce a barely catastrophic disruption (Q * D) for anhydrous ordinary chondrite meteorites is twice that for terrestrial basalt or glass, indicating that collisional disruption of anhydrous meteorites requires more energy than for a compact basalt. These results indicate that most stone meteors are likely to be weak, porous objects, and that the parent bodies of the anhydrous stone meteorites are likely to be more difficult to disrupt than compact terrestrial basalt.  相似文献   

12.
We built a collector to filter interplanetary dust particles (IDPs) larger than 5 μm from the clean air at the Amundsen Scott South Pole station. Our sampling strategy used long duration, continuous dry filtering of near‐surface air in place of short duration, high‐speed impact collection on flags flown in the stratosphere. We filtered ~107 m3 of clean Antarctic air through 20 cm diameter, 3 µm filters coupled to a suction blower of modest power consumption (5–6 kW). Our collector ran continuously for 2 years and yielded 41 filters for analyses. Based on stratospheric concentrations, we predicted that each month’s collection would provide 300–900 IDPs for analysis. We identified 19 extraterrestrial (ET) particles on the 66 cm2 of filter examined, which represented ~0.5% of the exposed filter surfaces. The 11 ET particles larger than 5 µm yield about a fifth of the expected flux based on >5 µm stratospheric ET particle flux. Of the 19 ET particles identified, four were chondritic porous IDPs, seven were FeNiS beads, two were FeNi grains, and six were chondritic material with FeNiS components. Most were <10 µm in diameter and none were cluster particles. Additionally, a carbon‐rich candidate particle was found to have a small 15N isotopic enrichment, supporting an ET origin. Many other candidate grains, including chondritic glasses and C‐rich particles with Mg and Si and FeS grains, require further analysis to determine if they are ET. The vast majority of exposed filter surfaces remain to be examined.  相似文献   

13.
Abstract— The reaction between kamacite grains and H2 + CO gas mixture has been tested in the laboratory under experimental conditions presumed for interplanetary dust particle (IDP) formation in a nebular-type environment (H2:CO = 250:1; 5 × 10?4 atm total pressure, and 473 K). Carbon deposition, hydrocarbon production in the C1–C4 range, and the formation of an ?-carbide phase occur when well-defined model FeNi bcc alloy (kamacite) particles are exposed to a mixture of H2 + CO during 103 h. These results strongly support the idea that gas-solid reactions in the solar nebula during CO hydrogenation represent a plausible scenario for the formation of carbides and carbonaceous materials in IDPs, as well as for the production of hydrocarbons through Fischer-Tropsch-type reactions.  相似文献   

14.
Abstract— The elemental compositions of 200 interplanetary dust particles (IDPs) collected in the stratosphere have been determined by energy dispersive X-ray (EDX) analysis. The results reasonably define the normal compositional range of chondritic interplanetary dust particles averaging 10 micrometers in size, and constitute a database for comparison with individual IDPs, meteorites, and spacecraft data from comets and asteroids. The average elemental composition of all IDPs analyzed is most similar to that of CI chondrites, but the data show that there are small yet discernable differences between mean IDP composition and the CI norm. Individual particles were classified into broad morphological groups, and the two major groups show unambiguous compositional differences. The “porous” group is a close match to bulk CI abundances, but the “smooth” group has systematic Ca and Mg depletions, and contains stoichiometric “excess” oxygen consistent with the presence of hydrous phases. Similar depletions of Ca and Mg in CI and CM matrix have been attributed to leaching, and by analogy we suggest that particles in the smooth group have also been processed by aqueous alteration. The occurrence of carbonates, magnetite framboids, and layer silicates provides additional evidence that at least a significant number of the smooth-class IDPs have been substantially processed by aqueous activity. The presence or absence of aqueous modification in members of a particle sub-class is an important clue to the origin. Although it cannot be proven, we hypothesize that extensive aqueous activity only occurs in asteroids and that, accordingly, the smooth class of IDPs has an asteroidal origin. If both comets and asteroids are major sources of interplanetary dust, then by default the porous particles are inferred to be dominated by cometary material.  相似文献   

15.
Abstract— The rare Mg-rich silicate fraction of the C1 meteorites, Orgueil and Alais, is dominated by minute (< 30 μm) forsterite. Twenty three forsterite grains of these meteorites as well as large forsterites in two chondritic porous interplanetary dust particles (IDPs) are characterized by levels of MnO generally, but not always, higher than found in forsterites of C2, C3 and unequilibrated ordinary chondrites (UOC). Forsterite in Orgueil contains 900 to 6200 ppmw MnO while Alais forsterite has less than 2000 ppmw MnO suggesting that the forsterites in the two meteorites are chemically distinct. Alais forsterite shows lower Cr and Al relative to Orgueil forsterite. The C1 forsterites do not show Fe-poor (FeO < 0.3), refractory-rich (Al, Ca, Ti, V) compositions which are relatively common in the C2-C3-UOC meteorites suggesting that the most primitive forsterite compositions are not present in these C1 meteorites. While minor elements in forsterite can not distinguish unambiguously between C1 and C2-C3-UOC sources, the high Mn levels in some IDP forsterites are similar to some C1 forsterites suggesting a possible relation between the forsterites of these two extraterrestrial samples.  相似文献   

16.
Abstract— Some fraction of Zn, Cu, Se, Ga and Ge in chondritic interplanetary dust particles (IDPs) collected in the lower stratosphere between 1981 May and 1984 June has a volcanic origin. I present a method to evaluate the extent of this unavoidable type of stratospheric contamination for individual particles. The mass-normalised abundances for Cu and Ge as a function of mass-normalised stratospheric residence time show their time-integrated stratospheric aerosol abundances. The Zn, Se and Ga abundances show a subdivision into two groups that span approximately two-year periods following the eruptions of the Mount St. Helens (1980 May) and El Chichón (1982 April) volcanos. Elemental abundances in particles collected at the end of each two-year period indicate low, but not necessarily ambient, volcanic stratospheric abundances. Using this time-integrated baseline, I calculate the stratospheric contaminant fractions in nine IDPs and show that Zn, Se and Ga abundances in chondritic IDPs derive in part from stratospheric aerosol contaminants. Post-entry elemental abundances (i.e., the amount that survived atmospheric entry heating of the IDP) show enrichments relative to the CI abundances but in a smaller number of particles than previously suggested.  相似文献   

17.
Abstract— The He, Ne, and Ar compositions of 32 individual interplanetary dust particles (IDPs) were measured using low‐blank laser probe gas extraction. These measurements reveal definitive evidence of space exposure. The Ne and Ar isotopic compositions in the IDPs are primarily a mixture between solar wind (SW) and an isotopically heavier component dubbed “fractionated solar” (FS), which could be implantation‐fractionated solar wind or a distinct component of the solar corpuscular radiation previously identified as solar energetic particles (SEP). Space exposure ages based on the Ar content of individual IDPs are estimated for a subset of the grains that appear to have escaped significant volatile losses during atmosphere entry. Although model‐dependent, most of the particles in this subset have ages that are roughly consistent with origin in the asteroid belt. A short (<1000 years) space exposure age is inferred for one particle, which is suggestive of cometary origin. Among the subset of grains that show some evidence for relatively high atmospheric entry heating, two possess elevated 21Ne/22Ne ratios generated by extended exposure to solar and galactic cosmic rays. The inferred cosmic ray exposure ages of these particles exceeds 107 years, which tends to rule out origin in the asteroid belt. A favorable possibility is that these 21Ne‐rich IDPs previously resided on a relatively stable regolith of an Edgeworth‐Kuiper belt or Oort cloud body and were introduced into the inner solar system by cometary activity. These results demonstrate the utility of noble gas measurements in constraining models for the origins of interplanetary dust particles.  相似文献   

18.
19.
We report on the investigation of presolar grain inventories of hydrated lithic clasts in three metal-rich carbonaceous chondrites from the CR clan, Acfer 182 (CH3), Isheyevo (CH3/CBb3), and Lewis Cliff (LEW) 85332 (C3-un), as well as the carbon- and nitrogen-isotopic compositions of the fine-grained clast material. Eleven presolar silicate grains as well as nine presolar silicon carbide (SiC) grains were identified in the clasts. Presolar silicate abundances range from 4 to 22 parts per million (ppm), significantly lower than in pristine meteorites and interplanetary dust particles (IDP), and comparable to recent findings for CM2s and CR2 interchondrule matrix. SiC concentrations lie between 9 and 23 ppm, and are comparable to the values for CI, CM, and CR chondrites. The results of our investigation suggest similar alteration pathways for the clast material, the interchondrule matrix of the CR2 chondrites, and the fine-grained fraction of CM2 chondrites. Fine-grained matter of all three meteorites contains moderate to high 15N-enrichments (~50‰ ≤ δ15N ≤ ~1600‰) compared to the terrestrial value, indicating the presence of primitive organic material. We observed no correlation between 15N-enrichments and presolar dust concentrations in the clasts. This is in contrast to the findings from a suite of primitive IDPs, which display in several cases enhanced bulk 15N/14N ratios and high presolar grain abundances of several hundred or even thousand ppm. The bulk 15N/14N ratios of the clasts are comparable to the range for primitive IDPs, suggesting a nitrogen carrier less susceptible to destruction by aqueous alteration than silicate stardust.  相似文献   

20.
Abstract Fragments from 20 individual particles, collected in the Earth's stratosphere and believed to be interplanetary dust particles (IDPs), were obtained from NASA's Johnson Space Center collection and subjected to step-heating to see if differences in the release pattern for 4He could be observed which might provide clues to the origin of the particles. Comparisons were made to the release pattern for 18 individual lunar surface grains heated in the same manner. Twelve of the IDP fragments contained an appreciable amount of 4He, 50 percent of which was released by the time the particles were heated to approximately 630 °C. For the 18 individual lunar grains the corresponding average temperature was 660 °C. The 3He/4He ratios found for these fragments agreed well with those found for deep Pacific magnetic fines believed to be of extraterrestrial origin, and were comparable to those which have been observed for the solar wind and lunar surface soil grains. Four of the IDP fragments contained appreciably less 4He, and this was released at a higher temperature. The remaining four fragments had too little 4He to permit a determination. From Flynn's analyses of the problem of the heating of IDPs in their descent in the atmosphere, the present results suggest that the parent IDPs of the 12 particles which contained an appreciable amount of 4He suffered very little heating in their descent and are likely of asteroidal origin, although one cannot rule out the possibility that at least some of them had a cometary origin and entered the earth's atmosphere at a grazing angle. Mineralogical and morphological studies on fragments companion to those used in the present investigation are under way. When these are completed, a more definite picture should emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号