首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the observed polarization properties of a sample of 26 powerful radio galaxies and radio-loud quasars to constrain the conditions in the Faraday screens local to the sources. We adopt the cosmological redshift, low-frequency radio luminosity and physical size of the large-scale radio structures as our 'fundamental' parameters. We find no correlation of the radio spectral index with any of the fundamental parameters. The observed rotation measure is also independent of these parameters, suggesting that most of the Faraday rotation occurs in the Galactic foreground. The difference between the rotation measures of the two lobes of an individual source, as well as the dispersion of the rotation measure, shows significant correlations with the source redshift, but not with the radio luminosity or source size. This is evidence that the small-scale structure observed in the rotation measure is caused by a Faraday screen local to the sources. The observed asymmetries between the lobes of our sources show no significant trends with each other or other source properties. Finally, we show that the commonly used model for the depolarization of synchrotron radio emission by foreground Faraday screens is inconsistent with our observations. We apply alternative models to our data and show that they require a strong increase of the dispersion of the rotation measure inside the Faraday screens with cosmological redshift. Correcting our observations with these models for redshift effects, we find a strong correlation of the depolarization measure with redshift and a significantly weaker correlation with radio luminosity. We do not find any (anti-)correlation of depolarization measure with source size. All our results are consistent with a decrease in the order of the magnetic field structure of the Faraday screen local to the sources for increasing cosmological redshift.  相似文献   

2.
Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have shown the presence of two distant edge-darkened FR I radio galaxies, allowing for the first time an estimate of their high-redshift space density. If it is assumed that the space density of FR I radio galaxies at     is similar to that found in the local Universe, then the chance of finding two FR I radio galaxies at these high radio powers in such a small area of sky is < 1 per cent. This suggests that these objects were significantly more abundant at     than at present, effectively ruling out the possibility that FR I radio sources undergo no cosmological evolution. We suggest that FR I and FR II radio galaxies should not be treated as intrinsically distinct classes of objects, but that the cosmological evolution is simply a function of radio power with FR I and FR II radio galaxies of similar radio powers undergoing similar cosmological evolutions. Since low-power radio galaxies have mainly FR I morphologies and high-power radio galaxies have mainly FR II morphologies, this results in a generally stronger cosmological evolution for the FR IIs than the FR Is. We believe that additional support from the V / V max test for evolving and non-evolving population of FR IIs and FR Is respectively is irrelevant, since this test is sensitive over very different redshift ranges for the two classes.  相似文献   

3.
We review the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding Universe filled with the cosmic plasma and provide a critical review of the literature on the subject. We put special emphasis on the prospects for observational tests of the proposed cosmological magnetogenesis scenarios using radio and gamma-ray astronomy and ultra-high-energy cosmic rays. We argue that primordial magnetic fields are observationally testable. They lead to magnetic fields in the intergalactic medium with magnetic field strength and correlation length in a well defined range.We also state the unsolved questions in this fascinating open problem of cosmology and propose future observations to address them.  相似文献   

4.
We summarize our current state of knowledge of fast radio bursts (FRBs) which were first discovered a decade ago. Following an introduction to radio transients in general, including pulsars and rotating radio transients, we discuss the discovery of FRBs. We then discuss FRB follow-up observations in the context of repeat bursts before moving on to review propagation effects on FRB signals, FRB progenitor models and an outlook on FRBs as potential cosmological tools.  相似文献   

5.
We will briefly discuss the importance of sensitive X-ray observations above a few tens of keV for a better understanding of the physical mechanisms associated to the Supermassive Black Hole primary emission in both radio quiet and radio loud AGN and to the cosmological evolution of the most obscured sources.  相似文献   

6.
Redshifted 21-cm radiation originating from the cosmological distribution of neutral hydrogen (H  i ) appears as background radiation in low-frequency radio observations. The angular and frequency domain fluctuations in this radiation carry information concerning cosmological structure formation. We propose that correlations between visibilities measured at different baselines and frequencies in radio-interferometric observations be used to quantify the statistical properties of these fluctuations. This has an inherent advantage over other statistical estimators in that it deals directly with the visibilities which are the primary quantities measured in radio-interferometric observations. Also, the visibility correlation has a very simple relation with the power spectrum. We present estimates of the expected signal for nearly the entire post-recombination era, from the dark ages to the present epoch. The epoch of reionization, where H  i has a patchy distribution, has a distinct signature where the signal is determined by the size of the discrete ionized regions. The signal at other epochs, where H  i follows the dark matter, is determined largely by the power spectrum of dark matter fluctuations. The signal is strongest for baselines where the antenna separations are within a few hundred times the wavelength of observation, and an optimal strategy would preferentially sample these baselines. In the frequency domain, for most baselines the visibilities at two different frequencies are uncorrelated beyond  Δν∼ 1 MHz  , a signature which, in principle, would allow the H  i signal to be easily distinguished from the continuum sources of contamination.  相似文献   

7.
We present low-frequency observations with the Giant Metrewave Radio Telescope of three giant radio sources (GRSs: J0139+3957, J0200+4049 and J0807+7400) with relaxed diffuse lobes which show no hotspots and no evidence of jets. The largest of these three, J0200+4049, exhibits a depression in the centre of the western lobe, while J0139+3957 and J0807+7400 have been suggested earlier by Klein et al. and Lara et al., respectively, to be relic radio sources. We estimate the ages of the lobes. We also present Very Large Array observations of the core of J0807+7400, and determine the core radio spectra for all three sources. Although the radio cores suggest that the sources are currently active, we explore the possibility that the lobes in these sources are due to an earlier cycle of activity.  相似文献   

8.
We review our current understanding of the internal dynamical properties of the dwarf spheroidal galaxies surrounding the Milky Way. These are the most dark matter dominated galaxies, and as such may be considered ideal laboratories to test the current concordance cosmological model, and in particular provide constraints on the nature of the dominant form of dark matter. We discuss the latest observations of the kinematics of stars in these systems, and how these may be used to derive their mass distribution. We tour through the various dynamical techniques used, with emphasis on the complementarity and limitations, and discuss what the results imply also in the context of cosmological models. Finally we provide an outlook on exciting developments in this field.  相似文献   

9.
In this paper we review four different types of X-ray and/or radio observations of active late-type stars. We then consider if a single magnetic source configuration – a toroidal dipole magnetic trap – can possibly explain these various different observations. We conclude that, indeed, dipole magnetic confinement (similar to the magnetic configurations of the Earth's radiation belts and the case of Jupiter and the Io torus) can explain all the diverse observational data. We take this to be very strong observational support for this type of magnetic confinement scheme. We also consider that this magnetic configuration is only likely to be established and maintained in the most active stars.  相似文献   

10.
We investigate the X-ray emission from the central regions of the prototypical starburst galaxy M82. Previous observations have shown a bright central X-ray point source, with suggestions as to its nature including a low-luminosity active galactic nucleus or an X-ray binary. A new analysis of ROSAT HRI observations finds four X-ray point sources in the central kiloparsec of M82, and we identify radio counterparts for the two brightest X-ray sources. The counterparts are probably young radio supernovae (SNe) and are amongst the most luminous and youthful SNe in M82. We therefore suggest that we are seeing X-ray emission from young SNe in M82, and in particular that the brightest X-ray source is associated with the radio source 41.95+57.5. We discuss the implications of these observations for the evolution of X-ray-luminous SNe.  相似文献   

11.
We present four Mpc-sized radio galaxies which consist of a pair of double-lobed radio sources, aligned along the same axis, and with a coinciding radio core. We call these peculiar radio sources 'double-double' radio galaxies (DDRGs) and propose a general definition of such sources: a 'double-double' radio galaxy consists of a pair of double radio sources with a common centre. Furthermore, the two lobes of the inner radio source must have a clearly extended, edge-brightened radio morphology. Adopting this definition, we find several other candidate DDRGs in the literature. We find that in all sources the smaller (inner) pair of radio lobes is less luminous than the larger (outer) pair, and that the ratio of 1.4-GHz flux density of these two pairs appears to be anticorrelated with the projected linear size of the inner source. Also, the outer radio structures are large, exceeding 700 kpc. We discuss possible formation scenarios of the DDRGs, and we conclude that an interruption of the jet-forming central activity is the most likely mechanism. For one of our sources (B 1834+620) we have been able observationally to constrain the length of time of the interruption to a few Myr. We discuss several scenarios for the cause of the interruption, and suggest multiple encounters between interacting galaxies as a possibility. Finally, we discuss whether such interruptions help the formation of extremely large radio sources.  相似文献   

12.
The spectroscopic red shifts of seven optical objects whose coordinates coincide with those of radio sources in the IVS (International VLBI Service for Geodesy and Astrometry) program list are determined from observations with the 6-m BTA telescope at the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences. A comparison of these spectra and red shifts with data in the radio frequency range shows that four of the objects discussed here are correctly identified, while the other three require further study. The distances to the radio sources derived from our measurements yield more accurate estimates of the cosmological model parameters than those based on the proper motions of these objects derived from geodesic VLBI observations.  相似文献   

13.
The results of the first stage of the “Cosmological Gene” project of the Russian Academy of Sciences are reported. These results consist in the accumulation of multi-frequency data in 31 frequency channels in the wavelength interval 1–55 cm with maximum achievable statistical sensitivity limited by the noise of background radio sources at all wavelengths exceeding 1.38 cm. The survey region is determined by constraints 00 h < RA < 24 h and 40°30′ < DEC < 42°30′. The scientific goals of the project are refined in view of recent proposals to use cosmological background radiation data for the development of a unified physical theory. Experimental data obtained with the RATAN-600 radio telescope are used to refine the contribution of the main “screens” located between the observer and the formation epoch of cosmic background radiation (z = 1100). Experimental data for synchrotron radiation and free-free noise on scales that are of interest for the anisotropy of cosmic microwave background are reported as well as the contribution of these noise components in millimeter-wave experiments to be performed in the nearest years. The role of dipole radio emission of fullerene-type dust nanostructures is shown to be small. The most precise estimates of the role of background radio sources with inverted spectra are given and these sources are shown to create no serious interference in experiments. The average spectral indices of the weakest sources of the NVSS and FIRST catalogs are estimated. The “saturation” data for all wavelengths allowed a constraint to be imposed on the Sunyaev-Zeldovich noise (the SZ noise) at all wavelengths, and made it possible to obtain independent estimates of the average sky temperature from sources, substantially weaker than those listed in the NVSS catalog. These estimates are inconsistent with the existence of powerful extragalactic synchrotron background associated with radio sources. Appreciable “quadrupole” anisotropy in is detected in the distribution of the spectral index of the synchrotron radiation of the Galaxy, and this anisotropy should be taken into account when estimating the polarization of the cosmic microwave background on small l. All the results are compared to the results obtained by foreign researchers in recent years.  相似文献   

14.
Using ROSAT observations, we estimate gas pressures in the X-ray-emitting medium surrounding 63 FRII radio galaxies and quasars. We compare these pressures with the internal pressures of the radio-emitting plasma estimated by assuming minimum energy or equipartition. In the majority of cases (including 12/13 sources with modelled, spatially resolved X-ray emission) radio sources appear to be underpressured with respect to the external medium, suggesting that simple minimum-energy arguments underestimate the internal energy density of the sources. We discuss possible departures from the minimum-energy condition and the consequences of our result for models of the dynamics of radio galaxies, in particular self-similar models .  相似文献   

15.
近些年,南山台址内部各类电子设备不断引入,此过程忽视了有效的设备管理及电磁防护,且台址周边无线电业务增多,以致电波环境恶化。为改善台址电波环境,采用一种准实时电波环境测量方法测量分析了台址周边瞬态信号的影响;另外,为提高微弱信号检测能力,采用便携式电磁干扰测量系统和26m射电望远镜对台址主要干扰信号特征及来源进行测量分析。依据测量和分析结果,采用屏蔽及滤波技术对望远镜观测室内部主要干扰源进行电磁防护,并针对屏蔽工程的有效性进行测量评估,结果表明,采用的电磁屏蔽措施有效。另外,提出了初步南山无线电宁静区保护办法缓解台址外部电磁干扰。  相似文献   

16.
A cosmic ray observatory with full-sky coverage can exploit standard anisotropy analysis methods that do not work if part of the celestial sphere is never seen. In particular, the distribution of arrival directions can be fully characterized by a list of spherical harmonic coefficients. The dipole vector and quadrupole tensor are of special interest, but the full set of harmonic coefficients constitutes the anisotropy fingerprint that may be needed to reveal the identity of the cosmic ray sources. The angular power spectrum is a coordinate-independent synopsis of that fingerprint. The true cosmic ray anisotropy can be measured despite non-uniformity in celestial exposure, provided the observatory is not blind to any region of the sky. This paper quantitatively examines how the accuracy of anisotropy measurement depends on the number of arrival directions in a data set.  相似文献   

17.
Jan Kuijpers 《Solar physics》1989,121(1-2):163-185
An overview is given of the observations of stellar radio flares, defined as radio emission which is both variable in time and created by explosive releases of magnetic energy. The main sources of such flares are late-type Main-Sequence stars, classic close binaries, X-ray binaries, and pre-Main-Sequence stars.We summarize the interpretations of these observations in terms of the various incoherent and coherent emission mechanisms. The possible importance of a coherent emission process in electrostatic double layers is pointed out.We briefly indicate the diagnostic importance of radio emission for the flare process in classic and compact stars. In particular we discuss the possible production of radio flares from interactions between an accretion disk and the magnetic field of the central object.  相似文献   

18.
The origin of discrepancy between the observed redshift dependence of the angular size of double radio sources and the relation expected for constant diameter objects in homogenous relativistic cosmologies is reconsidered. A correlation between absolute magnitude and projected linear separation for the sources could account for this discrepancy by observational selection without requiring cosmological evolution of the entire source population. We conclude that it is premature to use the -z test as support either for astrophysical models of double radio source evolution, or for particular cosmological models.  相似文献   

19.
By combining a model for the evolution of the radio luminosity of an individual source with the radio luminosity function, we perform a multidimensional Monte Carlo simulation to investigate the cosmological evolution of the Fanaroff–Riley type II (FR II) radio galaxy population by generating large artificial samples. The properties of FR II sources are required to evolve with redshift in the artificial samples to fit the observations. Either the maximum jet age or the maximum density of the jet environment or both evolve with redshift. We also study the distribution of FR II source properties as a function of redshift. From currently available data we cannot constrain the shape of the distribution of environment density or age, but jet power is found to follow a power-law distribution with an exponent of approximately −2. This power-law slope does not change with redshift out to   z = 0.6  . We also find the distribution of the pressure in the lobes of FR II sources to evolve with redshift up to   z ∼ 1.2  .  相似文献   

20.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号