首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report on Cassini Imaging Science Subsystem (ISS) data correlated with Radio and Plasma Wave Science (RPWS) observations, which indicate lightning on Saturn. A rare bright cloud erupt at ∼35° South planetocentric latitude when radio emissions (Saturn Electrostatic Discharges, or SEDs) occur. The cloud consisting of few consecutive eruptions typically lasts for several weeks, and then both the cloud and the SEDs disappear. They may reappear again after several months or may stay inactive for a year. Possibly, all the clouds are produced by the same atmospheric disturbance which drifts West at 0.45 °/day. As of March 2007, four such correlated visible and radio storms have been observed since Cassini Saturn Orbit Insertion (July 2004). In all four cases the SEDs are periodic with roughly Saturn's rotation rate (h10m39), and show correlated phase relative to the times when the clouds are seen on the spacecraft-facing side of the planet, as had been shown for the 2004 storms in [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The 2000-km-scale storm clouds erupt to unusually high altitudes and then slowly fade at high altitudes and spread at low altitudes. The onset time of individual eruptions is less than a day during which time the SEDs reach their maximum rates. This suggests vigorous atmospheric updrafts accompanied by strong precipitation and lightning. Unlike lightning on Earth and Jupiter, where considerable lightning activity is known to exist, only one latitude on Saturn has produced lightning strong enough to be detected during the two and a half years of Cassini observations. This may partly be a detection issue.  相似文献   

3.
The atmospheres of Jupiter and Saturn exhibit strong and stable zonal winds. How deep the winds penetrate unabated into each planet is unknown. Our investigation favors shallow winds. It consists of two parts. The first part makes use of an Ohmic constraint; Ohmic dissipation associated with the planet's magnetic field cannot exceed the planet's net luminosity. Application to Jupiter (J) and Saturn (S) shows that the observed zonal winds cannot penetrate below a depth at which the electrical conductivity is about six orders of magnitude smaller than its value at the molecular-metallic transition. Measured values of the electrical conductivity of molecular hydrogen yield radii of maximum penetration of 0.96RJ and 0.86RS, with uncertainties of a few percent of R. At these radii, the magnetic Reynolds number based on the zonal wind velocity and the scale height of the magnetic diffusivity is of order unity. These limits are insensitive to difficulties in modeling turbulent convection. They permit complete penetration along cylinders of the equatorial jets observed in the atmospheres of Jupiter and Saturn. The second part investigates how deep the observed zonal winds actually do penetrate. As it applies heuristic models of turbulent convection, its conclusions must be regarded as tentative. Truncation of the winds in the planet's convective envelope would involve breaking the Taylor-Proudman constraint on cylindrical flow. This would require a suitable nonpotential acceleration which none of the obvious candidates appears able to provide. Accelerations arising from entropy gradients, magnetic stresses, and Reynolds stresses appear to be much too weak. These considerations suggest that strong zonal winds are confined to shallow, stably stratified layers, with equatorial jets being the possible exception.  相似文献   

4.
Infrared spectral observations of Mars, Jupiter, and Saturn were made from 100 to 470 cm?1 using NASA's G. P. Kuiper Airborne Observatory. Taking Mars as a calibration source, we determined brightness temperatures of Jupiter and Saturn with approximately 5 cm?1 resolution. The data are used to determine the internal luminosities of the giant planets, for which more than 75% of the thermally emitted power is estimated to be in the measured bandpass: for Jupiter LJ = (8.0 ± 2.0) × 10?10L and for Saturn LS = (3.6 ± 0.9) × 10?10. The ratio R of thermally emitted power to solar power absorbed was estimated to be RJ = 1.6 ± 0.2, and RS = 2.7 ± 0.8 from the observations when both planets were near perihelion. The Jupiter spectrum clearly shows the presence of the rotational ammonia transitions which strongly influence the opacity at frequencies ?250 cm?1. Comparison of the data with spectra predicted from current models of Jupiter and Saturn permits inferences regarding the structure of the planetary atmospheres below the temperature inversion. In particular, an opacity source in addition to gaseous hydrogen and ammonia, such as ammonia ice crystals as suggested by Orton, may be necessary to explain the observed Jupiter spectrum in the vicinity of 250 cm?1.  相似文献   

5.
We apply an automated cloud feature tracking algorithm to estimate eddy momentum fluxes in Saturn's southern hemisphere from Cassini Imaging Science Subsystem near-infrared continuum image sequences. Voyager Saturn manually tracked images had suggested no conversion of eddy to mean flow kinetic energy, but this was based on a small sample of <1000 wind vectors. The automated procedure we use for the Cassini data produces an order of magnitude more usable wind vectors with relatively unbiased sampling. Automated tracking is successful in and around the westward jet latitudes on Saturn but not in the vicinity of most eastward jets, where the linearity and non-discrete nature of cloud features produces ambiguous results. For the regions we are able to track, we find peak eddy fluxes and a clear positive correlation between eddy momentum fluxes and meridional shear of the mean zonal wind, implying that eddies supply momentum to eastward jets and remove momentum from westward jets at a rate . The behavior we observe is similar to that seen on Jupiter, though with smaller eddy-mean kinetic energy conversion rates per unit mass of atmosphere (). We also use the appearance and rapid evolution of small bright features at continuum wavelengths, in combination with evidence from weak methane band images where possible, to diagnose the occurrence of moist convective storms on Saturn. Areal expansion rates imply updraft speeds of over the convective anvil cloud area. As on Jupiter, convection preferentially occurs in cyclonic shear regions on Saturn, but unlike Jupiter, convection is also observed in eastward jet regions. With one possible exception, the large eddy fluxes seen in the cyclonic shear latitudes do not seem to be associated with convective events.  相似文献   

6.
Observations suggest that moist convection plays an important role in the large-scale dynamics of Jupiter's and Saturn's atmospheres. Here we use a reduced-gravity quasigeostrophic model, with a parameterization of moist convection that is based on observations, to study the interaction between moist convection and zonal jets on Jupiter and Saturn. Stable jets with approximately the same width and strength as observations are generated in the model. The observed zonal jets violate the barotropic stability criterion but the modeled jets do so only if the flow in the deep underlying layer is westward. The model results suggest that a length scale and a velocity scale associated with moist convection control the width and strength of the jets. The length scale and velocity scale offer a possible explanation of why the jets of Saturn are stronger and wider than those of Jupiter.  相似文献   

7.
We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.  相似文献   

8.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

9.
《Planetary and Space Science》1999,47(10-11):1225-1242
Infrared spectra of Jupiter and Saturn have been recorded with the two spectrometers of the Infrared Space Observatory (ISO) in 1995–1998, in the 2.3–180 μm range. Both the grating modes (R=150–2000) and the Fabry-Pérot modes (R=8000–30,000) of the two instruments were used. The main results of these observations are (1) the detection of water vapour in the deep troposphere of Saturn; (2) the detection of new hydrocarbons (CH3C2H, C4H2, C6H6, CH3) in Saturn’s stratosphere; (3) the detection of water vapour and carbon dioxide in the stratospheres of Jupiter and Saturn; (4) a new determination of the D/H ratio from the detection of HD rotational lines. The origin of the external oxygen source on Jupiter and Saturn (also found in the other giant planets and Titan in comparable amounts) may be either interplanetary (micrometeoritic flux) or local (rings and/or satellites). The D/H determination in Jupiter, comparable to Saturn’s result, is in agreement with the recent measurement by the Galileo probe (Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiters atmosphere. Space Science Rev. 84 251–263); the D/H values on Uranus and Neptune are significantly higher, as expected from current models of planetary formation.  相似文献   

10.
An investigation of low-resolution ratio spectra of Jupiter, Saturn, and Titan in the region 5400–6500 Å has permitted new evaluations of ammonia absorption bands. The distribution of ammonia over the disk of Jupiter is very inhomogeneous. The carbon-to-nitrogen ratio is distinctly different from the solar value, but this is probably a result of uneven mixing of methane and ammonia, as suggested previously by Kuiper, rather than a compositional anomaly. The abundance of ammonia on Saturn also shows spatial variations, but appears constant in time over a 3-yr period. Two weak, unidentified absorptions were discovered in the red region of Titan's spectrum, in the absence of any detectable ammonia. The new upper limit is ηN < 120 cm-am.  相似文献   

11.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   

12.
From an analysis of the Galileo Near Infrared Imaging Spectrometer (NIMS) data, Baines et al. (Icarus 159 (2002) 74) have reported that spectrally identifiable ammonia clouds (SIACs) cover less than 1% of Jupiter. Localized ammonia clouds have been identified also in the Cassini Composite Infrared Spectrometer (CIRS) observations (Planet. Space Sci. 52 (2004a) 385). Yet, ground-based, satellite and spacecraft observations show that clouds exist everywhere on Jupiter. Thermochemical models also predict that Jupiter must be covered with clouds, with the top layer made up of ammonia ice. For a solar composition atmosphere, models predict the base of the ammonia clouds to be at 720 mb, at 1000 mb if N/H were 4×solar, and at 0.5 bar for depleted ammonia of 10−2×solar (Planet. Space Sci. 47 (1999) 1243). Thus, the above NIMS and CIRS findings are seemingly at odds with other observations and cloud physics models. We suggest that the clouds of ammonia ice are ubiquitous on Jupiter, but that spectral identification of all but the freshest of the ammonia clouds and high altitude ammonia haze is inhibited by a combination of (i) dusting, starting with hydrocarbon haze particles falling from Jupiter's stratosphere and combining with an even much larger source—the hydrazine haze; (ii) cloud properties, including ammonia aerosol particle size effects. In this paper, we investigate the role of photochemical haze and find that a substantial amount of haze material can deposit on the upper cloud layer of Jupiter, possibly enough to mask its spectral signature. The stratospheric haze particles result from condensation of polycyclic aromatic hydrocarbons (PAHs), whereas hydrazine ice is formed from ammonia photochemistry. We anticipate similar conditions to prevail on Saturn.  相似文献   

13.
Upper limits are placed on the D/H ratio in the observed portions of the atmospheres of Jupiter and Saturn from observations at high S/N over the region of the 5-0 R(1) line of HD. The upper limits of 4 × 10?5 and 6 × 10?5 D/H on Jupiter and Saturn, respectively, are not inconsistent with present models for abundance ratios in the primitive solar nebula or with other estimates of this quantity from observations.  相似文献   

14.
15.
P.G.J. Irwin  K. Sihra  F.W. Taylor 《Icarus》2005,176(2):255-271
New measurements of the low-temperature near-infrared absorption of methane (Sihra, 1998, Laboratory measurements of near-infrared methane bands for remote sensing of the jovian atmosphere, Ph.D. thesis, University of Oxford) have been combined with existing, longer path-length, higher-temperature data of Strong et al. (1993, Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm−1 for remote sounding of the atmosphere of Jupiter, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) and fitted with band models. The combined data set is found to be more consistent with previous low-temperature methane absorption measurements than that of Strong et al. (1993, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) but covers the same wider wavelength range and accounts for both self- and hydrogen-broadening conditions. These data have been fitted with k-coefficients in the manner described by Irwin et al. (1996, Calculated k-distribution coefficients for hydrogen- and self-broadened methane in the range 2000-9500 cm−1 from exponential sum fitting to band modelled spectra, J. Geophys. Res. 101, 26,137-26,154) and have been used in multiple-scattering radiative transfer models to assess their impact on our previous estimates of the jovian cloud structure obtained from Galileo Near-Infrared Mapping Spectrometer (NIMS) observations (Irwin et al., 1998, Cloud structure and atmospheric composition of Jupiter retrieved from Galileo NIMS real-time spectra, J. Geophys. Res. 103, 23,001-23,021; Irwin et al., 2001, The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5-μm opacity, Icarus 149, 397-415; Irwin and Dyudina, 2002, The retrieval of cloud structure maps in the equatorial region of Jupiter using a principal component analysis of Galileo/NIMS data, Icarus 156, 52-63). Although significant differences in methane opacity are found at cooler temperatures, the difference in the optical depth of the atmosphere due to methane is found to diminish rapidly with increasing pressure and temperature and thus has negligible effect on the cloud structure inferred at deeper levels. Hence the main cloud opacity variation is still found to peak at around 1-2 bar using our previous analytical approach, and is thus still in disagreement with Galileo Solid State Imager (SSI) determinations (Banfield et al., 1998, Jupiter's cloud structure from Galileo imaging data, Icarus 135, 230-250; Simon-Miller et al., 2001, Color and the vertical structure in Jupiter's belts, zones and weather systems, Icarus 154, 459-474) which place the main cloud deck near 0.9 bar. Further analysis of our retrievals reveals that this discrepancy is probably due to the different assumptions of the two analyses. Our retrievals use a smooth vertically extended cloud profile while the SSI determinations assume a thin NH3 cloud below an extended haze. When the main opacity in our model is similarly assumed to be due to a thin cloud below an extended haze, we find the main level of cloud opacity variation to be near the 1 bar level—close to that determined by SSI and moderately close to the expected condensation level of ammonia ice of 0.85 bar, assuming that the abundance of ammonia on Jupiter is (7±1)×10−4 (Folkner et al., 1998, Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal, J. Geophys. Res. 103, 22,847-22,855; Atreya et al., 1999, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin, Planet. Space Sci. 47, 1243-1262). However our data in the 1-2.5 μm range have good height discrimination and our lowest estimate of the cloud base pressure of 1 bar is still too great to be consistent with the most recent estimates of the ammonia abundance of 3.5 × solar. Furthermore the observed limited spatial distribution of ammonia ice absorption features on Jupiter suggests that pure ammonia ice is only present in regions of localised vigorous uplift (Baines et al., 2002, Fresh ammonia ice clouds in Jupiter: spectroscopic identification, spatial distribution, and dynamical implications, Icarus 159, 74-94) and is subsequently rapidly modified in some way which masks its pure absorption features. Hence we conclude that the main cloud deck on Jupiter is unlikely to be composed of pure ammonia ice and instead find that it must be composed of either NH4SH or some other unknown combination of ammonia, water, and hydrogen sulphide and exists at pressures of between 1 and 2 bar.  相似文献   

16.
Data on the composition and thermal structure, and the Lyman-alpha dayglow of Saturn when analyzed in conjunction with photochemical models of the hydrocarbons and the atomic hydrogen production yield the homopause value of the eddy diffusion coefficient to be approximately 108 cm2 s?1. The equatorial value of the eddy diffusion coefficient at the homopause of Saturn is thus found to be approximately 100 times greater than on Jupiter. The mesosphere (and presumably, troposphere) of Saturn appears to be considerably more turbulent than the upper atmosphere of Jupiter.  相似文献   

17.
Based on the data on the wavelength dependence of geometrical albedo for the disks of Jupiter and Saturn, we determined the trends in the height variation of the aerosol optical depth in the upper atmospheric layers of these planets, the fractional methane concentration in the Jovian atmosphere (0.00125), and the monochromatic methane absorption coefficients (or the superposition of these coefficients for methane and ammonia) typical of the thermal conditions in the atmospheres of Jupiter and Saturn in the wavelength range from 527 to 956 nm.  相似文献   

18.
Yuan Lian  Adam P. Showman 《Icarus》2008,194(2):597-615
Three-dimensional numerical simulations of the atmospheric flow on giant planets using the primitive equations show that shallow thermal forcing confined to pressures near the cloud tops can produce deep zonal winds from the tropopause all the way down to the bottom of the atmosphere. These deep winds can attain speeds comparable to the zonal jet speeds within the shallow, forced layer; they are pumped by Coriolis acceleration acting on a deep meridional circulation driven by the shallow-layer eddies. In the forced layer, the flow reaches an approximate steady state where east-west eddy accelerations balance Coriolis accelerations acting on the meridional flow. Under Jupiter-like conditions, our simulations produce 25 to 30 zonal jets, similar to the number of jets observed on Jupiter and Saturn. The simulated jet widths correspond to the Rhines scale; this suggests that, despite the three-dimensional nature of the dynamics, the baroclinic eddies energize a quasi-two-dimensional inverse cascade modified by the β effect (where β is the gradient of the Coriolis parameter). In agreement with Jupiter, the jets can violate the barotropic and Charney-Stern stability criteria, achieving curvatures 2u/∂y2 of the zonal wind u with northward distance y up to 2β. The simulations exhibit a tendency toward neutral stability with respect to Arnol'd's second stability theorem in the upper troposphere, as has been suggested for Jupiter, although deviations from neutrality exist. When the temperature varies strongly with latitude near the equator, our simulations can also reproduce the stable equatorial superrotation with wind speeds greater than . Diagnostics show that barotropic eddies at low latitudes drive the equatorial superrotation. The simulations also broadly explain the distribution of jet-pumping eddies observed on Jupiter and Saturn. While idealized, these simulations therefore capture many aspects of the cloud-level flows on Jupiter and Saturn.  相似文献   

19.
Ever since their discovery the regular satellites of Jupiter and Saturn have held out the promise of providing an independent set of observations with which to test theories of planet formation. Yet elucidating their origins has proven elusive. Here we show that Iapetus can serve to discriminate between satellite formation models. Its accretion history can be understood in terms of a two-component gaseous subnebula, with a relatively dense inner region, and an extended tail out to the location of the irregular satellites, as in the SEMM model of Mosqueira and Estrada (2003a,b) (Mosqueira, I., Estrada, P.R. [2003a]. Icarus 163, 198-231; Mosqueira, I., Estrada, P.R. [2003b]. Icarus 163, 232-255). Following giant planet formation, planetesimals in the feeding zone of Jupiter and Saturn become dynamically excited, and undergo a collisional cascade. Ablation and capture of planetesimal fragments crossing the gaseous circumplanetary disks delivers enough collisional rubble to account for the mass budgets of the regular satellites of Jupiter and Saturn. This process can result in rock/ice fractionation as long as the make up of the population of disk crossers is non-homogeneous, thus offering a natural explanation for the marked compositional differences between outer solar nebula objects and those that accreted in the subnebulae of the giant planets. For a given size, icy objects are easier to capture and to ablate, likely resulting in an overall enrichment of ice in the subnebula. Furthermore, capture and ablation of rocky fragments become inefficient far from the planet for two reasons: the gas surface density of the subnebula is taken to drop outside the centrifugal radius, and the velocity of interlopers decreases with distance from the planet. Thus, rocky objects crossing the outer disks of Jupiter and Saturn never reach a temperature high enough to ablate either due to melting or vaporization, and capture is also greatly diminished there. In contrast, icy objects crossing the outer disks of each planet ablate due to the melting and vaporization of water-ice. Consequently, our model leads to an enhancement of the ice content of Iapetus, and to a lesser degree those of Titan, Callisto and Ganymede, and accounts for the (non-stochastic) compositions of these large, low-porosity outer regular satellites of Jupiter and Saturn. For this to work, the primordial population of planetesimals in the Jupiter-Saturn region must be partially differentiated, so that the ensuing collisional cascade produces an icy population of ?1 m size fragments to be ablated during subnebula crossing. We argue this is likely because the first generation of solar nebula ∼10 km planetesimals in the Jupiter-Saturn region incorporated significant quantities of 26Al. This is the first study successfully to provide a direct connection between nebula planetesimals and subnebulae mixtures with quantifiable and observable consequences for the bulk properties of the regular satellites of Jupiter and Saturn, and the only explanation presently available for Iapetus’ low density and ice-rich composition.  相似文献   

20.
A calculation has been made of the gravitational contraction of a homogeneous, quasi-equilibrium Saturn model of solar composition. The calculations begin at a time when the planet's radius is ten times larger than its present size, and the subsequent gravitational contraction is followed for 4.5 × 109 years. For the first million years of evolution, the Saturn model contracts rapidly like a pre-main sequence star and has a much higher luminosity and effective temperature than at present. Later stages of contraction occur more slowly and are analogous to the cooling phase of a degenerate white dwarf star.Examination of the interior structure of the models indicates the presence of a metallic hydrogen region near the center of the planet. Differences in the size of this region for Jupiter and Saturn may, in part, be responsible for Saturn having a weaker magnetic field. While the interior temperatures are much too high for the fluids in the molecular and metallic regions to become solids by the current epoch, the temperature in the outer portion of the metallic zone falls below Stevenson's [Phys. Rev. J. (1975)] phase separation curve for helium after 1.2 billion years of evolution. This would lead to a sinking of helium from the outer to the inner portion of the metallic region, as described by Salpeter [Astrophys. J.181, L83–L86 (1973)].At the current epoch, the radius of the model is about 9% larger, while its excess luminosity is comparable to the observed value of Rieke [Icarus26, 37–44 (1975)], as refined by Wright [Harvard College Obs. Preprint No. 480 (1976)]. This behavior of the Saturn model may be compared to the good agreement with both Jupiter's observed radius and excess luminosity shown by an analogous model of Jupiter [Graboske et al., Astrophys. J.199, 255–264 (1975)]. The discrepancy in radius of our Saturn model may be due to errors in the equations of state and/or our neglect of a rocky core. However, arguments are presented which indicate that helium separation may cause an expansion of the model and thus lead to an even bigger discrepancy in radius. Improvement in the radius may also foster a somewhat larger predicted luminosity. At least part and perhaps most of Saturn's excess luminosity is due to the loss of internal thermal energy that was built up during the early rapid contraction, with a minor contribution coming from Saturn's present rate of contraction. These two sources dominate Jupiter's excess luminosity. If helium separation makes an important contribution to Saturn's excess luminosity, then planetwide segregation is required.Finally, because Saturn's early high luminosity was about an order of magnitude smaller than Jupiter's, water-ice satellites may have been able to form closer to Saturn to Jupiter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号