首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accretion disc outbursts: a new version of an old model   总被引:1,自引:0,他引:1  
We have developed 1D time-dependent numerical models of accretion discs, using an adaptive grid technique and an implicit numerical scheme, in which the disc size is allowed to vary with time. The code fully resolves the cooling and heating fronts propagating in the disc. We show that models in which the radius of the outer edge of the disc is fixed produce incorrect results, from which probably incorrect conclusions about the viscosity law have been inferred. In particular we show that outside-in outbursts are possible when a standard bimodal behaviour of the Shakura–Sunyaev viscosity parameter α is used. We also discuss to what extent insufficient grid resolution has limited the predictive power of previous models. We find that the global properties (magnitudes, etc.) of transient discs can be addressed by codes using a high, but reasonable, number of fixed grid points. However, the study of the detailed physical properties of the transition fronts generally requires resolutions which are out of reach of fixed grid codes. It appears that most time-dependent models of accretion discs published in the literature have been limited by resolution effects, improper outer boundary conditions, or both.  相似文献   

2.
We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.  相似文献   

3.
We find a new two-temperature hot branch of equilibrium solutions for stationary accretion discs around black holes. In units of Eddington accretion rate defined as 10 L Edd c 2, the accretion rates to which these solutions correspond are within the range ̇ 1≲ ̇ ≲1, where ̇ 1 is the critical rate of advection-dominated accretion flow (ADAF). In these solutions, the energy loss rate of the ions by Coulomb energy transfer between the ions and electrons is larger than the viscously heating rate and it is the advective heating together with the viscous dissipation that balances the Coulomb cooling of ions. When ̇ 1≲ ̇ ≲ ̇ 2, where ̇ 2∼5 ̇ 1<1, the accretion flow remains hot throughout the disc. When ̇ 2≲ ̇ ≲1, Coulomb interaction will cool the inner region of the disc within a certain radius ( r tr∼several tens of Schwarzschild radii or larger depending on the accretion rate and the outer boundary condition) and the disc will collapse on to the equatorial plane and form an optically thick cold annulus. Compared with ADAF, these hot solutions are much more luminous because of the high accretion rate and efficiency; therefore, we call them luminous hot accretion discs.  相似文献   

4.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

5.
The radial–azimuthal instability of a hot two-temperature accretion disc with advection is examined in this paper. We find that the inclusion of very little advection has significant effects on two acoustic modes for a geometrically thin, cooling-dominated two-temperature disc, but has no effect on acoustic modes for a geometrically slim, cooling-dominated two-temperature disc. We also find that, when azimuthal perturbations are considered, the stability properties of the disc are different from those in the pure radial perturbation case. An increase of the azimuthal wavenumber will stabilize the acoustic modes but make the viscous and thermal modes more unstable for a geometrically thin, cooling-dominated two-temperature disc. It makes the thermal mode more unstable and the acoustic mode more stable, but only affects the instability of the viscous mode for short-wavelength perturbations for a geometrically slim, cooling-dominated two-temperature disc. For a geometrically slim, advection-dominated two-temperature disc, the increase of the azimuthal perturbation makes the I- and O-modes more stable and the thermal mode more unstable, but has no effect on the viscous mode.  相似文献   

6.
We consider the effects of accretion stream overflow on the viscous dynamics of accretion discs in dwarf novae. If the stream from the secondary star is geometrically thick enough, some fraction of its material can flow over and under the disc. The mass and specific angular momentum of the stream are then deposited not only at the point of collision with the outer disc, but also at those radii in the inner disc with geometric heights that are large enough to intercept the residual stream, or near the radius where the disc has the same specific angular momentum as the stream. The overflowing stream can alter the behaviour of heating fronts and cooling fronts in the disc. If the mass fraction of the overflowing stream is of order tens of per cent, the deposition of mass in the inner parts of the disc is sufficient to change the character of the eruption light curves significantly.  相似文献   

7.
In this paper, we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in active galactic nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole–disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius R w and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute explicitly the time-scales for the warping of the disc and for the alignment process and compare our results with earlier estimates based on simplified steady-state solutions. We also confirm earlier predictions that, under appropriate circumstances, accretion can proceed in a counter-aligned fashion, so that the accreted material will spin-down the hole, rather than spinning it up. Our results have implication in a number of different observational features of AGN such as the orientation and shape of jets, the shape of X-ray iron lines and the possibility of obscuration and absorption of X-ray by the outer disc as well as the general issue of the spin history of black holes during their growth.  相似文献   

8.
9.
We study the dynamical structure of a self-gravitating disc with coronae around a supermassive black hole. Assuming that the magnetorotational instability responsible for generating the turbulent stresses inside the disc is also the source for a magnetically dominated corona, a fraction of the power released when the disc matter accretes is transported to and dissipated in the corona. This has a major effect on the structure of the disc and its gravitational (in)stability according to our analytical and self-consistent solutions. We determine the radius where the disc crosses the inner radius of gravitational instability and forms the first stars. Not only the location of this radius which may extend to very large distances from the central black hole, but also the mass of the first stars highly depends on the input parameters, notably the viscosity coefficient, the mass of the central object and the accretion rate. For accretion discs around quasi-stellar objects (QSOs) and the Galactic Centre, we determine the self-gravitating radius and the mass of the first clumps. Comparing the cases with a corona and without a corona for typical discs around QSOs or the Galactic Centre, when the viscosity coefficient is around 0.3, we show that the self-gravitating radius decreases by a factor of approximately 2, but the mass of the fragments increases with more or less the same factor. The existence of a corona implies a more gravitationally unstable disc according to our results. The effect of a corona on the instability of the disc is more effective when the viscosity coefficient increases.  相似文献   

10.
We consider the problem of poloidal magnetic field advection and bending of an initially vertical field owing to radial inflow in thin accretion discs. For a ratio of kinematic viscosity to magnetic diffusivity of order unity, significant bending of an externally applied vertical field cannot occur in a disc with no internal dynamo. However, we show that if poloidal field is generated by a dynamo operating near its critical state, then significant field bending may be possible. Our results are of particular relevance to wind launching from accretion discs.  相似文献   

11.
We consider a thin accretion disc warped due to the Bardeen–Petterson effect, presenting both analytical and numerical solutions for the situation in which the two viscosity coefficients vary with radius as a power law, with the two power-law indices not necessarily equal. The analytical solutions are compared with numerical ones, showing that our new analytical solution is more accurate than the previous one, which overestimated the inclination change in the outer disc. Our new analytical solution is appropriate for moderately warped discs, while for extremely misaligned discs only a numerical solution is appropriate.  相似文献   

12.
13.
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius.
We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68 a 0.88 . Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.  相似文献   

14.
Using smoothed particle hydrodynamics, we numerically simulate steady-state accretion discs for cataclysmic variable dwarf novae systems that have a secondary-to-primary mass ratio  0.35 ≤ q ≤ 0.55  . After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by  δ= (1, 2, 3, 4, 5 or 20)°  to induce negative superhumps. For accretion discs tilted  5°  , we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than 3° for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact.
In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional light from innermost disc annuli, and this additional light waxes and wanes with the amount of gas stream overflow received as the secondary orbits. The nodes, where the gas stream transitions from flowing over to under the disc rim (and vice versa), precess in the retrograde direction.  相似文献   

15.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

16.
We compare standard models of accretion discs around black holes (BHs) that include the appropriate zero-torque inner boundary condition and relativistic effects on the emission and propagation of radiation. The comparison is performed adopting the multicolour disc blackbody model (MCD) as reference and looking for the parameter space in which it is in statistical agreement with 'more physical' accretion disc models. We find simple 'recipes' that can be used for adjusting the estimates of the physical inner radius of the disc, the BH mass and the accretion rate inferred using the parameters of the MCD fits. We applied these results to four ultraluminous X-ray sources for which MCD spectral fits of their X-ray soft spectral components have been published and find that, in three cases (NGC 1313 X-1, X-2 and M 81 X-9), the BH masses inferred for a standard disc around a Schwarzschild BH are in the interval  ∼100–200 M  . Only if the BH is maximally rotating are the masses comparable to the much larger values previously derived in the literature.  相似文献   

17.
18.
There may exist a transition region from the geometrically thick outer region to the geometrically thin inner region in accretion discs. In this paper we calculate the spectra emitted by the portions of the inner region which are not occulted by the transition region, and deduce the emergent spectra of accretion discs to be observed, taking into account the reflection effect of radiation by the transition region. Our results show that the difference between these emergent spectra of discs and the standard ones of steady accretion disc models is significant when the central portion of discs is occulted by the transition region. It might play a role in the explanation of continuous spectra for some dwarf novae.  相似文献   

19.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

20.
Observations suggest that accretion discs in many X-ray binaries are likely flared. An outer edge of the disc intercepts radiation from the central X-ray source. Part of that radiation is absorbed and re-emitted in the optical/UV spectral ranges. However, a large fraction of that radiation is reflected and appears in the broad-band X-ray spectrum as a Compton reflection bump. This radiation is delayed and variability is somewhat smeared compared with the intrinsic X-ray radiation. We compute response functions for flat and flared accretion discs and for isotropic and anisotropic X-ray sources. A simple approximation for the response function which is valid in the broad range of the disc shapes and inclinations, inner and outer radii, and the plasma bulk velocity is proposed. We also study the impact of the X-ray reprocessing on temporal characteristics of X-ray binaries such as the power spectral density, auto- and cross-correlation functions, and time/phase lags. We propose a reprocessing model which explains the secondary peaks in the phase lag Fourier spectra observed in Cyg X-1 and other Galactic black hole sources. The position of the peaks could be used to determine the size of the accretion disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号