首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
提出了一种适用于天基空间目标光学观测的初始轨道确定新方法. 通过对比地基和天基观测的几何构型, 分析了利用天基光学观测数据进行初轨确定时计算收敛到观测平台自身轨道的原因. 基于轨道半通径方程和改进Gauss方程, 推导出了斜距条件方程组的解析形式, 将天基光学观测的初轨确定问题转换为求解关于观测时刻斜距变量的非线性条件方程组的问题. 利用轨道能量约束减小了解的搜索区域, 消除了方程组的奇点. 最后利用天基实测数据验证并分析了非线性条件方程组根的性质, 利用低轨光学观测平台对低、中、高轨和大椭圆轨道空间目标的仿真观测数据验证了方法的有效性.  相似文献   

2.
针对地基卫星测控系统(Tracking Telemetry and Command, TT&C)系统对地球静止轨道(Geostation-\lk ary Earth Orbit, GEO)卫星在空间和时间覆盖上的局限性, 提出小倾角低地球轨道(Low Earth Orbit, LEO)多星组网天基平台对GEO卫星进行跟踪定轨的方法. 根据空间环境和光学可视条件对仿真数据进行筛选以模拟真实的观测场景, 利用光学测角数据, 使用数值方法对GEO卫星的轨道进行确定. 结果与参考轨道进行重叠对比, 在平台轨道精度5 m、测量精度5rq\rq、 定轨弧长12 h的情况下, 两颗LEO卫星对GEO卫星进行跟踪定轨的精度可达到千米量级, 4颗LEO卫星对GEO目标进行跟踪定轨的精度可达到百米量级. 随着LEO组网卫星数量的增加, 定轨精度得到了较大的提高.  相似文献   

3.
当测轨数据误差不服从正态分布时,传统的最小二乘(LSE)轨道确定方法将不是最优的.为了获得高精度的定轨结果,一种可行的策略是采用基于最小p范数(Lp)的轨道确定方法.通过分析Lp估计的相关性质,得出普通Lp估计不具有良好的抗差性的结论.为抑制模型误差和异常值的影响,提出了基于数据深度加权的稳健最小p范数估计方法,并证明了相关性质,得出了其崩溃点可以达到1/2的结论.最后,通过残差分析和矩估计法自适应估计相关参数,使得估计达到最大效率.以天基空间目标监视系统为背景进行了仿真试验.结果表明,当观测数据存在系统误差或异常值时,或者当目标动力学模型存在误差或者天基观测平台存在系统误差时,即使观测数据服从正态分布,LSE也不是最优的,在这种意义下自适应稳健Lp估计轨道确定方法比传统轨道确定方法更加稳健,定轨精度也更高.  相似文献   

4.
针对地基光学监测系统对近地小行星在近太阳方向的监测存在盲区的问题,提出了远距离逆行轨道(Distant Retrograde Orbit,DRO)天基光学平台对近地小行星进行跟踪定轨的方法.通过可视性分析,筛选仿真观测数据,利用美国宇航局喷气推进实验室(Jet Propulsion Laboratory,JPL)公布的小行星初始轨道信息对不同轨道类型的目标天体进行轨道确定,将计算结果与参考轨道对比分析.仿真结果表明:在测量精度2角秒,定轨弧长3年的情况下,DRO平台对仿真算例中所选择的近地小行星的定轨精度可以达到几十公里量级,其中Atira型轨道精度可达10公里以内.由此可见,DRO天基平台对近地小行星具有较好的监测能力,定轨精度能实现对目标小行星的精确跟踪,并对其进行轨道预报.  相似文献   

5.
经典的初轨确定方法包括Laplace方法和Gauss方法以及它们的各种变化形式. 除这些经典方法之外, 基于当今光学观测数据的特点, 学者们也陆续提出了一些其他的初轨确定方法, 包括双r (目标距离观测者的距离)方法和可行域方法. 双r方法的一种实现方式是通过猜测某两个时刻(通常是定轨弧段的首、末时刻)目标离观测者的距离, 结合观测者在空间中的位置矢量, 即可求解相应的Lambert弧段作为目标轨道的初始猜测. 进一步, 以其他观测时刻的RMS (Root Mean Square)为优化变量可以改进初始猜测从而确定初轨. 可行域方法则是针对一组初始观测参数(包括赤经、赤纬及其变率), 根据一些初始假设将目标(离观测者的)距离及其变率约束在可行域内, 并通过三角划分逐步逼近的方式寻找到使观测RMS最小的猜测解. 针对一系列模拟观测数据以及实测数据, 将智能优化算法(粒子群算法)应用于这两种初轨方法, 并将结果与改进的Laplace算法的结果进行比较. 由于双r方法不仅可以用于短弧定轨还可用于长弧关联, 所以进一步给出了针对长弧段数据的关联结果.  相似文献   

6.
在空间目标光学观测资料定轨中常常会遇到多个目标的观测被标记为同一个目标的情况,由于包含了多个目标的数据,定轨过程无法收敛或者完全错误.从极大似然估计角度,采用EM(Expectation Maximum)方法提出一种将轨道改进和识别过程相互融合的处理方法,并在具体实现过程中给出一种稳健估计方法.数值模拟表明方法简便、有效、可行.采用站间差历元差的手段,对当前电离层变化值进行求解与预测,可以将电离层延时误差的变化控制在一定范围,满足频率传递的要求.  相似文献   

7.
卫星动力学模型误差是客观存在的事实,动力学模型误差传递到轨道确定算法中构成部分形式未知的模型误差,并且与测量系统自身的系统误差和随机误差耦合在一起形成定轨模型误差,严重影响轨道确定精度.详细推导了存在动力学模型误差的轨道改进方程,对模型中能准确描述的部分建立了参数化模型,对不能准确描述的误差部分,建立了非参数模型.构建了部分线性轨道改进模型,利用二阶段估计法和核函数估计法对模型误差进行拟合估计,并在轨道改进中予以补偿.根据数据深度理论,建立了非参数模型误差的深度加权核估计方法,提高了模型误差估计的抗差性.最后结合天基空间目标监视系统进行了轨道确定仿真实验.实验结果表明,模型误差是影响轨道确定精度的重要因素,核函数估计法可以有效估计定轨中的模型误差,窗宽是提高模型估计精度的重要变量,通过深度加权处理可以明显提高核函数估计的抗差性,提高轨道确定精度.  相似文献   

8.
精密解算了非合作目标的单站激光测距数据.观测数据少、数据弧段分布不好是对非合作目标进行精密定轨的难点.通过定轨过程中对动力学模型的选择及求解参数的选取,使得轨道计算收敛.解算多组圈数的非合作目标数据,将轨道重叠弧段对比作为评判定轨精度的指标;从多组圈数中提取出一圈的观测数据,对其余数据进行定轨处理,将定轨后的轨道结果与提取出的观测数据进行对比,得到在同一时刻的距离偏差,使其作为精密定轨的外符合.结果表明:对非合作目标(4814)进行精密定轨,平均测距残差为1.01 m,在测距方向上,测量数据外符合的平均轨道精度为14.35 m,预报1 d的测距精度为24.60 m.  相似文献   

9.
单站测距资料定轨的困难限制了漫反射SLR(Satellite Laser Ranging)测距资料的应用.为此,提出利用两行根数模拟多站SLR测距资料作为辅助,实现单站SLR测距资料定轨的方法.该方法对卫星Ajisai单站SLR测距资料定轨并生成5 d预报轨道,误差小于40 m,实现利用单站测距资料的轨道改进,验证了方法的可行性.  相似文献   

10.
SGP4/SDP4模型精度分析   总被引:2,自引:0,他引:2  
本文基于最新发布的SGP4/SDP4(Simplified General Perturbation Version 4/Simplified Deep-space Perturbation Version 4)模型设计了一套定轨方案,从空间目标库中挑选出不同类型和轨道参数的1120个目标进行计算,定量给出了SGP4/SDP4模型处理不同类型空间目标的定轨预报精度.结果表明:近地目标定轨精度为百米量级;半同步和同步轨道定轨精度平均为0.7和1.9km.椭圆轨道目标的定轨精度与偏心率有关,除少数e>0.8的椭圆轨道目标,绝大多数椭圆轨道目标定轨误差均小于10km.用SGP4/SDP4模型对近地目标预报3天,半同步轨道预报30天,同步轨道预报15天,椭圆轨道预报1天,预报误差一般不超过40km.  相似文献   

11.
卫星轨道预报的一种分析方法   总被引:5,自引:0,他引:5  
刘林  王彦荣 《天文学报》2005,46(3):307-313
人造地球卫星的轨道预报是空间环境监测和实时跟踪测量中一个重要环节,由于监测对象众多,要求精度也不太高,通常采用分析法预报.在已有分析法得到t时刻平均根数的基础上给出一种轨道预报方法,由t时刻的平均根数给出该时刻卫星的位置和速度,在此基础上将地球非球形引力摄动的周期项直接用卫星直角坐标的位置和速度分量表示,这样可以避免在计算轨道根数变化的周期项时出现的奇点问题,从而对根数的选择无特殊要求,可适用于各种轨道,简化预报程序和相应的软件,提高预报效率。  相似文献   

12.
The preliminary orbit determination with optical angular measure- ments plays an important role in the survey of space objects. The classical method of orbit computation based on the least square error estimation is not robust while outliers occur in the observation. A robust method is proposed by employing the least absolute deviation estimation. The method reduces the problem of orbit determination to a linear programming problem, and gives the variance of the estimation with the bootstrap method. Numerical check shows that the method is effective and robust, and has a high breakdown point.  相似文献   

13.
Based on the latest release of the SGP4/SDP4 (Simplified General Perturbation Version 4/ Simplified Deep-space Perturbation Version 4) model, in this paper we have designed an orbit determination program. Through calculations for the 1120 objects with various types and orbital elements selected from the space objects database, we have obtained the accuracies of the orbit determination prediction dealt with various types of space objects by the SGP4/SDP4 model. The results show that the accuracies of the near-earth objects are in the order of magnitude of 100 meters; the averages of the orbit determination accuracies of the semi-synchronous and geosynchronous orbits are, respectively, 0.7 and 1.9 km. The orbit determination accuracies of the elliptical orbit objects are related to their eccentricities. Except for few elliptical orbit objects with e > 0.8, the orbit determination errors of the vast majority of the elliptical orbit objects are all less than 10 km. By using the SGP4/SDP4 model to make 3 days predictions for near-earth objects, 30 days for semi-synchronous orbit objects, 15 days for geosynchronous orbit objects and 1 day for elliptical orbit objects, the errors of prediction generally don’t exceed 40 km.  相似文献   

14.
Abstract— We present a novel Markov‐Chain Monte‐Carlo orbital ranging method (MCMC) for poorly observed single‐apparition asteroids with two or more observations. We examine the Bayesian a posteriori probability density of the orbital elements using methods that map a volume of orbits in the orbital‐element phase space. In particular, we use the MCMC method to sample the phase space in an unbiased way. We study the speed of convergence and also the efficiency of the new method for the initial orbit computation problem. We present the results of the MCMC ranging method applied to three objects from different dynamical groups. We conclude that the method is applicable to initial orbit computation for near‐Earth, main‐belt, and transneptunian objects.  相似文献   

15.
A method is developed to calculate probability of collision. Based on geometric features of space objects during the encounter, it is reasonable to separate the radial orbital motions from those in the cross section for most encounter events that occur in a near-circular orbit. Therefore, the probability of collision caused by differences in both altitude of the orbit in the radial direction and the probability of collision caused by differences in arrival time in the cross section are calculated. The net probability of collision is expressed as an explicit expression by multiplying the above two components. Numerical cases are applied to test this method by comparing the results with the general method. The results indicate that this method is valid for most encounter events that occur in near-circular orbits.  相似文献   

16.
Using statistical orbital ranging, we systematically study the orbit computation problem for transneptunian objects (TNOs). We have automated orbit computation for large numbers of objects, and, more importantly, we are able to obtain orbits even for the most sparsely observed objects (observational arcs of a few days). For such objects, the resulting orbit distributions include a large number of high-eccentricity orbits, in which TNOs can be perturbed by close encounters with Neptune. The stability of bodies on the computed orbits has therefore been ascertained by performing a study of close encounters with the major planets. We classify TNO orbit distributions statistically, and we study the evolution of their ephemeris uncertainties. We find that the orbital element distributions for the most numerous single-apparition TNOs do not support the existence of a postulated sharp edge to the belt beyond 50 AU. The technique of statistical ranging provides ephemeris predictions more generally than previously possible also for poorly observed TNOs.  相似文献   

17.
For satellite conjunction prediction containing many objects, timely processing can be a concern. Various filters are used to identify orbiting pairs that cannot come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to quicken the overall processing time. One such filter is the orbit path filter (also known as the geometric pre-filter), designed to eliminate pairs of objects based on characteristics of orbital motion. The goal of this filter is to eliminate pairings where the distance (geometry) between their orbits remains above some user-defined threshold, irrespective of the actual locations of the satellites along their paths. Rather than using a single distance bound, this work presents a toroid approach, providing a measure of versatility by allowing the user to specify different in-plane and out-of-plane bounds for the path filter. The primary orbit is used to define a focus-centered elliptical ring torus with user-defined thresholds. An assessment is then made to determine if the secondary orbit can touch or penetrate this torus. The method detailed here can be used on coplanar, as well as non-coplanar, orbits.  相似文献   

18.
A modified Laplacian technique is described for initial orbit determination of asteroids from CCD observations and its applications for orbit determination of the main belt asteroids and near Earth asteroids. The proposed modification is based on a simultaneous improvement of both the orbital elements and the derivatives of spherical coordinates in frames of Laplace's method. It provides an orbit which represents the used observations with the residuals comparable with errors of these observations. The improved values of the derivatives might be used as ephemeris parameters for identification of newly discovered objects.  相似文献   

19.
In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号