首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Based on the equations of the self-generated magnetic field in the q-distributed plasmas, the studies show that the magnetic field is modulationally unstable by the perturbation method and the equations have self-similar collapse solution. The anomalous magnetic viscosity of accretion disks generates from highly spatially intermittent flux of the self-generated magnetic field. In addition, the anomalous viscosity coefficient is 8 orders more than the molecular viscosity and is modified by the adjustable index q, which may preferably explain the observations.  相似文献   

2.
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.  相似文献   

3.
A theory of partially elastic collisions is constructed for frictionless planetesimals in an arbitrary gravitational field. The non-zero size of the particles and the influence of gravitational encounters are included. The equations for a self-gravitating rotationally symmetric disk or ring are written in an explicit form. Such systems turn out to be bimodal in the same sense as the Keplerian systems, i.e. there are two kinds of stable configurations which may co-exist in adjacent regions without disturbing the mechanical equilibrium. The transitions from one mode to another can also occur at essentially smaller values of the optical thickness than those previously found for Saturn's rings: in one of the numerically studied cases the transition from the dense to the rarefied mode occurred at the optical thickness 3×10?5 while the reversed process corresponded to a higher value, 10?2. The difference illustrates the dependence of the transition on its direction. The characteristic S shape which several authors have found for the relation between the viscosity and the optical thickness in Keplerian systems becomes more complicated if the contribution of self-gravitation increases. In some cases the stable solutions also imply a certain minimum value of the optical thickness.  相似文献   

4.
The generation of magnetic fields by a battery, operating in an ion–electron plasma around a Kerr black hole, is studied in the 3+1 split of the Kerr metric. It is found that the gravitomagnetic contributions to the electron partial pressure are able to drive currents. The strength of the equilibrium magnetic field should be higher than for the classical Biermann battery, which is found to operate in this relativistic context as well, since the gravitomagnetic driving terms can less easily be quenched than the classical ones. In axisymmetry the battery can induce only toroidal magnetic fields. Once a toroidal magnetic field is present, however, the coupling of gravitomagnetic and electromagnetic fields generates a poloidal magnetic field even in axisymmetry. A rotating black hole, embedded in plasma, will therefore always generate toroidal and poloidal magnetic fields.  相似文献   

5.
The collision of test charged particles in the vicinity of an event horizon of a weakly magnetized non-rotating black hole with gravitomagnetic charge has been studied. The presence of the external magnetic field decreases the innermost stable circular orbits (ISCO) radii of charged particles. The opposite mechanism occurs when there is nonvanishing gravitomagnetic charge. For a collision of charged particle moving at ISCO and the neutral particle falling from infinity the maximal collision energy can be decreased by gravitomagnetic charge in the presence of external asymptotically uniform magnetic field.  相似文献   

6.
We study the effects of outflow/wind on the gravitational stability of accretion discs around supermassive black holes using a set of analytical steady-state solutions. Mass-loss rate by the outflow from the disc is assumed to be a power-law of the radial distance and the amount of the energy and the angular momentum which are carried away by the wind are parameterized phenomenologically. We show that the mass of the first clumps at the self-gravitating radius linearly decreases with the total mass-loss rate of the outflow. Except for the case of small viscosity and high accretion rate, generally, the self-gravitating radius increases as the amount of mass-loss by the outflow increases. Our solutions show that as more angular momentum is lost by the outflow, then reduction to the mass of the first clumps is more significant.  相似文献   

7.
This study investigates the stability of a class of radiating viscous self-gravitating stars with axial symmetry having anisotropic pressure. We use perturbation technique to establish the perturbed form of the Einstein field equations and dynamical equations. The instability range in the Newtonian and post-Newtonian eras has been analyzed by constructing the collapse equation. It is found that the adiabatic index has a key role in the discussion of instability ranges which depends upon the physical parameters, i.e., energy density, anisotropic pressure and shear viscosity of the fluid and heat flux. We conclude that the shear viscosity decreases the instability range and makes the system more stable.  相似文献   

8.
9.
We have found an approximate solution of Dirac equation using Foldy-Wouthuysen-Tani Hamiltonian of a Dirac particle in the Kerr gravitational field. We have solved the equation approximately using time-independent perturbation theory for the positive energy states. We have found frequencies by which these states oscillate. Difference of the periods of any of these two states has an identical form of the classical gravitomagnetic clock effect where the terms are quantized. So that, we have found a quantum version of the gravitomagnetic clock effect of a Dirac fermion in the Kerr gravitational field.  相似文献   

10.
11.
12.
Differential equations governing the dynamical tides in close binary systems consisting of centrally condensed components of viscous gas are split up (Section 2) in their real and imaginary parts, the ratio of which defines the tidal lag. In Sections 3 and 4 these equations will be particularized to a case in which the central mass-point of each star is surrounded by an evanescent envelope the density of which decreases as the inverse square of the central distance. It is shown that self-gravitating configurations built up in accordance with this model are incapable of performing free nonradial oscillations with a frequency comprised between 0 2 ; but explicit expressions for forced oscillations representing dynamical tides are given for an arbitrary form of the external field of force. Equations for the imaginary components of the displacement, constructed for the same model in Section 4, disclose that if the viscosity of stellar material is identified with that of hydrogen plasma, the tidal lag due to a viscous dissipation of kinetic energy may produce dynamical effects, the cumulative outcome of which becomes appreciable on the Kelvin time-scale, but over short intervals of time their stationary photometric effects should be negligible. The latter can become observationally significant only for stars in which turbulent viscosity under near-adiabatic conditions becomes and important factor.  相似文献   

13.
We present a new formulation of the viscosity in planetary rings, where particles interact through their gravitational forces and direct collisions. In the previous studies on the viscosity in self-gravitating rings, the viscosity consists of three components, which are defined separately in different ways. The complex definitions make it difficult to evaluate the viscosity in N-body simulation of rings. In our new formulation, the viscosity is expressed in terms of changes in orbital elements of particles due to particle interactions. This makes the expression of the viscosity simple. The new formulation gives a simple way to evaluate the viscosity in N-body simulation. We find that for practical evaluation of the viscosity of planetary rings, only energy dissipation at direct inelastic collisions is needed.For tenuous particle disks (i.e., optically thin disks), we further derive a formula of the viscosity. The formula requires only a numerical coefficient that can be obtained from three-body calculation. Since planetesimal disks are also tenuous, the viscosity in planetesimal disks can be also obtained from this formula. In a subsequent paper, we will evaluate this coefficient through three-body calculation and obtain the viscosity for a wide range of parameters such as the restitution coefficient and the radial location in rings.  相似文献   

14.
The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.  相似文献   

15.
The shadow of a rotating black hole with nonvanishing gravitomagnetic charge has been studied. It was shown that in addition to the angular momentum of black hole the gravitomagnetic charge term deforms the shape of the black hole shadow. From the numerical results we have obtained that for a given value of the rotation parameter, the presence of a gravitomagnetic charge enlarges the shadow and reduces its deformation with respect to the spacetime without gravitomagnetic charge. Finally we have studied the capture cross section for massive particles by black hole with the nonvanishing gravitomagnetic charge.  相似文献   

16.
By a natural nonextensive generalization of the conservation of energy in the q-kinetic theory, we study the nonextensivity and the power-law distributions for the many-body systems with the self-gravitating long-range interactions. It is shown that the power-law distributions describe the long-range nature of the interactions and the non-local correlations within the self-gravitating system with the inhomogeneous velocity dispersion. A relation is established between the nonextensive parameter q≠1 and the measurable quantities of the self-gravitating system: the velocity dispersion and the mass density. Correspondingly, the nonextensive parameter q can be uniquely determined from the microscopic dynamical equation and thus the physical interpretation of q different from unity can be clearly presented. We derive a nonlinear differential equation for the radial density dependence of the self-gravitating system with the inhomogeneous velocity dispersion, which can correctly describe the density distribution for the dark matter in the above physical situation. We also apply this q-kinetic approach to analyze the nonextensivity of self-gravitating collisionless systems and self-gravitating gaseous dynamical systems, giving the power-law distributions the clear physical meaning.   相似文献   

17.
The aim of the present paper will be to derive from the fundamental equations of hydrodynamics the explicit form of the Eulerian equations which govern the motion about the centre of gravity of self-gravitating bodies, consisting of compressible fluid of arbitrary viscosity, in an arbitrary external field of force. If the problem is particularized so that the external field of force represents the attaction of the sun and the moon, this motion would represent the luni-solar precession and nutation of a fluid viscous earth; if, on the other hand, the external field of force were governed by the earth (and the sun), the motion would define the physical librations of the moon regarded as a deformable body. The same equations are, moreover, equally applicable to the phenomena of precession and nutation of rotating fluid components in close binary systems, distorted by mutual tidal action; and the present paper contains the first formulation of the effects of viscosity on such phenomena.Investigation supported in part by the U.S. National Aeronautics and Space Administration under Contract No. NASW-1470.  相似文献   

18.
The viscosity (the angular momentum flux) in the disk of mutually gravitating particles of Saturn's rings is investigated. The hydrodynamic theory of the gravitational Jeans-type instability of small gravity perturbations (e.g., those produced by spontaneous disturbances) of the disk is developed. It is suggested that in such a system the hydrodynamic turbulence may arise as a result of the instability. The turbulence is related to stochastic motions of “fluid” elements. The objective of this paper is to show that in the Jeans-unstable Saturnian ring disk the turbulent viscosity may exceed the ordinary microscopic viscosity substantially. The main result of local N-body simulations of planetary rings by Daisaka et al. (2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296-312) is explained: in the presence of the gravitationally unstable density waves, the effective turbulent viscosity νeff is given as νeff=CG2Σ2/Ω3, where G, Σ, and Ω are the gravitational constant, the surface mass density of a ring, and the angular velocity, respectively, and the nondimensional correction factor C≈10. We argue that both Saturn's main rings and their irregular of the order of 100 m or even less fine-scale structure (being recurrently created and destroyed on the time scale of an order of Keplerian period ) are not likely much younger than the solar system.  相似文献   

19.
We study the dynamical structure of a self-gravitating disc with coronae around a supermassive black hole. Assuming that the magnetorotational instability responsible for generating the turbulent stresses inside the disc is also the source for a magnetically dominated corona, a fraction of the power released when the disc matter accretes is transported to and dissipated in the corona. This has a major effect on the structure of the disc and its gravitational (in)stability according to our analytical and self-consistent solutions. We determine the radius where the disc crosses the inner radius of gravitational instability and forms the first stars. Not only the location of this radius which may extend to very large distances from the central black hole, but also the mass of the first stars highly depends on the input parameters, notably the viscosity coefficient, the mass of the central object and the accretion rate. For accretion discs around quasi-stellar objects (QSOs) and the Galactic Centre, we determine the self-gravitating radius and the mass of the first clumps. Comparing the cases with a corona and without a corona for typical discs around QSOs or the Galactic Centre, when the viscosity coefficient is around 0.3, we show that the self-gravitating radius decreases by a factor of approximately 2, but the mass of the fragments increases with more or less the same factor. The existence of a corona implies a more gravitationally unstable disc according to our results. The effect of a corona on the instability of the disc is more effective when the viscosity coefficient increases.  相似文献   

20.
J. Salmon  S. Charnoz 《Icarus》2010,209(2):771-785
Planetary rings are common in the outer Solar System but their origin and long-term evolution is still a matter of debate. It is well known that viscous spreading is a major evolutionary process for rings, as it globally redistributes the disk’s mass and angular momentum, and can lead to the disk’s loosing mass by infall onto the planet or through the Roche limit. However, describing this process is highly dependent on the model used for the viscosity. In this paper we investigate the global and long-term viscous evolution of a circumplanetary disk. We have developed a simple 1D numerical code, but we use a physically realistic viscosity model derived from N-body simulations (Daisaka et al., 2001), and dependent on the disk’s local properties (surface mass density, particle size, distance to the planet). Particularly, we include the effects of gravitational instabilities (wakes) that importantly enhance the disk’s viscosity. This method allows to study the global evolution of the disk over the age of the Solar System.Common estimates of the disk’s spreading time-scales with constant viscosity significantly underestimate the rings’ lifetime. We show that, with a realistic viscosity model, an initially narrow ring undergoes two successive evolutionary stages: (1) a transient rapid spreading when the disk is self-gravitating, with the formation of a density peak inward and an outer region marginally gravitationally stable, and with an emptying time-scale proportional to (where M0 is the disk’s initial mass), (2) an asymptotic regime where the spreading rate continuously slows down as larger parts of the disk become non-self-gravitating due to the decrease of the surface density, until the disk becomes completely non-self-gravitating. At this point its evolution dramatically slows down, with an emptying time-scale proportional to 1/M0, which significantly increases the disk’s lifetime compared to the case with constant viscosity. We show also that the disk’s width scales like t1/4 with the realistic viscosity model, while it scales like t1/2 in the case of constant viscosity, resulting in much larger evolutionary time-scales in our model. We find however that the present shape of Saturn’s rings looks like a 100 million-years old disk in our simulations. Concerning Jupiter’s, Uranus’ and Neptune’s rings that are faint today, it is not likely that they were much more massive in the past and lost most of their mass due to viscous spreading alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号