首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A. Kilcik  A. Ozguc 《Solar physics》2014,289(4):1379-1386
We investigate solar activity by focusing on double maxima in solar cycles and try to estimate the shape of the current solar cycle (Cycle 24) during its maximum. We analyzed data for Solar Cycle 24 by using Learmonth Solar Observatory sunspot-group data collected since 2008. All sunspot groups (SGs) recorded during this time interval were separated into two groups: The first group includes small SGs [A, B, C, and H classes according to the Zurich classification], the second group consists of large SGs [D, E, and F]. We then calculated how many small and large sunspot groups occurred, their sunspot numbers [SSN], and the Zurich numbers [Rz] from their daily mean numbers as observed on the solar disk during a given month. We found that the temporal variations for these three different separations behave similarly. We also analyzed the general shape of solar cycles from Cycle 1 to 23 by using monthly International Sunspot Number [ISSN] data and found that the durations of maxima were about 2.9 years. Finally, we used the ascending time and SSN relationship and found that the maximum of Solar Cycle 24 is expected to occur later than 2011. Thus, we conclude that i) one possible reason for a double maximum in solar cycles is the different behavior of large and small sunspot groups, and ii) a double maximum is expected for Solar Cycle 24.  相似文献   

2.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   

3.
A stochastic prediction model for the sunspot cycle is proposed. The prediction model is based on a modified binary mixture of Laplace distribution functions and a moving-average model over the estimated model parameters. A six-parameter modified binary mixture of Laplace distribution functions is used for the modeling of the shape of a generic sunspot cycle. The model parameters are estimated for 23 sunspot cycles independently, and the primary prediction-model parameters are derived from these estimated model parameters using a moving-average stochastic model. A correction factor (hump factor) is introduced to make an initial prediction. The hump factor is computed for a given sunspot cycle as the ratio of the model estimated after the completion of a sunspot cycle (post-facto model) and the prediction of the moving-average model. The hump factors can be applied one at a time over the moving-average prediction model to get a final prediction of a sunspot cycle. The present model is used to predict the characteristics of Sunspot Cycle 24. The methodology is validated using the previous Sunspot Cycles 21, 22, and 23, which shows the adequacy and the applicability of the prediction model. The statistics of the variations of sunspot numbers at high solar activity are used to provide the lower and upper bound for the predictions using the present model.  相似文献   

4.
In this work a new information resource located at http://www.gao.spb.ru/database/esai and hereinafter referred to as ESAI (“Extended time series of Solar Activity Indices”) is presented. ESAI includes observational, synthetic and simulated sets to study solar magnetic field variations and their influence on the Earth. ESAI extends the ordinary lengths of some traditional indices, parameterizing time variations of physically different characteristics of solar activity. In particular, long-term sets of the following indices are presented: sunspot areas, the Wolf numbers, polar faculae numbers, sunspot mean latitudes and north-south asymmetry of hemispheres for different components of activity. Some methods for making correct conclusions from incomplete data and some criteria to estimate the reliability of the obtained information are discussed.  相似文献   

5.
Long-Term Sunspot Number Prediction based on EMD Analysis and AR Model   总被引:2,自引:0,他引:2  
The Empirical Mode Decomposition (EMD) and Auto-Regressive model (AR) are applied to a long-term prediction of sunspot numbers. With the sample data of sunspot numbers from 1848 to 1992, the method is evaluated by examining the measured data of the solar cycle 23 with the prediction: different time scale components are obtained by the EMD method and multi-step predicted values are combined to reconstruct the sunspot number time series. The result is remarkably good in comparison to the predictions made by the solar dynamo and precursor approaches for cycle 23. Sunspot numbers of the coming solar cycle 24 are obtained with the data from 1848 to 2007, the maximum amplitude of the next solar cycle is predicted to be about 112 in 2011-2012.  相似文献   

6.
A new index, the cumulative difference of sunspot activity in the northern and southern hemispheres, respectively, is proposed to describe the long-term behavior of the North – South asymmetry of sunspot activity and to show the balance (or bias) of sunspot activity in the two solar hemispheres on a long-term scale. Sunspot groups and sunspot areas from June 1874 to January 2007 are used to show the advantage of the index. The index clearly shows a long-term characteristic time scale of about 12 cycles in the North – South asymmetry of sunspot activity. Sunspot activity is found to dominate in the southern hemisphere in cycle 23, and in cycle 24 it is predicted to dominate still in the southern hemisphere. A comparison of the new index with other similar indexes is also given.  相似文献   

7.
INTER-CYCLE VARIATIONS OF SOLAR IRRADIANCE: SUNSPOT AREAS AS A POINTER   总被引:1,自引:0,他引:1  
Fligge  M.  Solanki  S. K. 《Solar physics》1997,173(2):427-439
Most of the present models and reconstructions of solar irradiance use the concept of Photometric Sunspot Index (PSI) to account for the influence of sunspots on solar brightness. Since PSI is based on measured sunspot areas a firm database of such areas is essential. We show, however, that a significant disagreement exists between the data provided by the Royal Greenwich Observatory (from 1874 to 1976) and newer measurements provided by the observatories of Rome, Yunnan, Catania, and the US Air Force. The overlap of the time intervals over which sunspot areas were measured at Greenwich and Rome allows us to quantify the difference between the Greenwich and other data sets. We find that the various data sets differ, at least in a statistical sense, mainly by a correction factor of between 1.15 and 1.25.The revised time series of sunspot areas correlates well with the Zürich sunspot relative numbers over the last 120 years, with the relationship between sunspot areas and sunspot numbers changing only slightly from one cycle to the next. In particular, no indication exists for any extraordinary magnetic behavior of the Sun during the last 2 decades, as might falsely be concluded if the various sunspot area data sets are uncritically combined. There are, however, some indications that cycles 15 and 16 deviate from the rest. We expect that our results should have a significant influence on the reconstruction of the historical solar irradiance.  相似文献   

8.
We show in this short note that the method of singular spectrum analysis (SSA) is able to clearly extract a strong, clean, and clear component from the longest available sunspot (International Sunspot Number, ISN) time series (1700?–?2015) that cannot be an artifact of the method and that can be safely identified as the Gleissberg cycle. This is not a small component, as it accounts for 13% of the total variance of the total original signal. Almost three and a half clear Gleissberg cycles are identified in the sunspot number series. Four extended solar minima (XSM) are determined by SSA, the latest around 2000 (Cycle 23/24 minimum). Several authors have argued in favor of a double-peaked structure for the Gleissberg cycle, with one peak between 55 and 59 years and another between 88 and 97 years. We find no evidence of the former: solar activity contains an important component that has undergone clear oscillations of \(\approx90\) years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a \(\approx90\)-year Gleissberg cycle, and a double-peaked (\(\approx10.0\) and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.  相似文献   

9.
Group Sunspot Numbers: A New Solar Activity Reconstruction   总被引:1,自引:0,他引:1  
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

10.
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

11.
We study variations of the lifetimes of high- solar p modes in the quiet and active Sun with the solar activity cycle. The lifetimes in the degree range =300 – 600 and ν=2.5 – 4.5 mHz were computed from SOHO/MDI data in an area including active regions and quiet Sun using the time – distance technique. We applied our analysis to the data in four different phases of solar activity: 1996 (at minimum), 1998 (rising phase), 2000 (at maximum), and 2003 (declining phase). The results from the area with active regions show that the lifetime decreases as activity increases. The maximal lifetime variations are between solar minimum in 1996 and maximum in 2000; the relative variation averaged over all values and frequencies is a decrease of about 13%. The lifetime reductions relative to 1996 are about 7% in 1998 and about 10% in 2003. The lifetime computed in the quiet region still decreases with solar activity, although the decrease is smaller. On average, relative to 1996, the lifetime decrease is about 4% in 1998, 10% in 2000, and 8% in 2003. Thus, measured lifetime increases when regions of high magnetic activity are avoided. Moreover, the lifetime computed in quiet regions also shows variations with the activity cycle.  相似文献   

12.
R. P. Kane 《Solar physics》2006,233(1):107-115
This paper examines the variations of coronal mass ejections (CMEs) and interplanetary CMEs (ICMEs) during solar cycle 23 and compares these with those of several other indices. During cycle 23, solar and interplanetary parameters had an increase from 1996 (sunspot minimum) to ∼2000, but the interval 1998–2002 had short-term fluctuations. Sunspot numbers had peaks in 1998, 1999, 2000 (largest), 2001 (second largest), and 2002. Other solar indices had matching peaks, but the peak in 2000 was larger than the peak in 2001 only for a few indices, and smaller or equal for other solar indices. The solar open magnetic flux had very different characteristics for different solar latitudes. The high solar latitudes (45–90) in both N and S hemispheres had flux evolutions anti-parallel to sunspot activity. Fluxes in low solar latitudes (0–45) evolved roughly parallel to sunspot activity, but the finer structures (peaks etc. during sunspot maximum years) did not match with sunspot peaks. Also, the low latitude fluxes had considerable N–S asymmetry. For CMEs and ICMEs, there were increases similar to sunspots during 1996–2000, and during 2000–2002, there was good matching of peaks. But the peaks in 2000 and 2001 for CMEs and ICMEs had similar sizes, in contrast to the 2000 peak being greater than the 2001 peak for sunspots. Whereas ICMEs started decreasing from 2001 onwards, CMEs continued to remain high in 2002, probably due to extra contribution from high-latitude prominences, which had no equivalent interplanetary ICMEs or shocks. Cosmic ray intensity had features matching with those of sunspots during 2000–2001, with the 2000 peak (on a reverse scale, actually a cosmic ray decrease or trough) larger than the 2001 peak. However, cosmic ray decreases started with a delay and ended with a delay with respect to sunspot activity.  相似文献   

13.
Results are presented from a study of solar radius measurements taken with the solar astrolabe at the TUBITAK National Observatory (TUG) over seven years, 2001–2007. The data series with standard deviation of 0.35 arcsec shows the long-term variational trend with 0.04 arcsec/year. On the other hand, the data series of solar radius are compared with the data of sunspot activity and H-α flare index for the same period. Over the seven year trend, we have found significant linear anti-correlations between the solar radius and other indicators such as sunspot numbers, sunspot areas, and H-α flare index. While the solar radius displays the strongest anti-correlation (−0.7676) with sunspot numbers, it shows a significant anti-correlation of −0.6365 with sunspot areas. But, the anti-correlation between the solar radius and H-α flare index is found to be −0.4975, slightly lower than others. In addition, we computed Hurst exponent of the data sets ranging between 0.7214 and 0.7996, exhibiting the persistent behavior for the long term trend. In the light of the strong correlations with high significance, we may suggest that there are a causal relationship between the solar radius and solar time series such as sunspot activity and H-α flare index.  相似文献   

14.
The series of directly observed sunspot numbers is nearly 400 years long. We stress that the recently compiled group sunspot number series is an upgrade of the old Wolf series and should always be used before 1850. The behavior of solar activity on longer time scales can be studied only using indirect proxies. Such proxies as aurorae occurrence or naked-eye sunspot observations are qualitative indicators of solar activity but can be hardly quantitatively interpreted. Cosmogenic isotope records provide a basis for quantitative estimate of the past solar activity. Here we overview the main methods of the long-term solar activity reconstruction on the centennial to multimillennia time scale. We discuss that regression-based reconstructions of solar activity lead to very uncertain results, while recently developed physics-based models raise solar activity reconstruction to a new level and allow studying its behavior on a multimillennia time scale. In particular, the reconstructions show that the recent episode of high solar activity is quite unusual in the multimillennia time scale.  相似文献   

15.
Sunspot activity is usually described by either sunspot numbers or sunspot areas. The smoothed monthly mean sunspot numbers (SNs) and the smoothed monthly mean areas (SAs) in the time interval from November 1874 to September 2007 are used to analyze their phase synchronization. Both the linear method (fast Fourier transform) and some nonlinear approaches (continuous wavelet transform, cross-wavelet transform, wavelet coherence, cross-recurrence plot, and line of synchronization) are utilized to show the phase relation between the two series. There is a high level of phase synchronization between SNs and SAs, but the phase synchronization is detected only in their low-frequency components, corresponding to time scales of about 7 to 12 years. Their high-frequency components show a noisy behavior with strong phase mixing. Coherent phase variables should exist only for a frequency band with periodicities around the dominating 11-year cycle for SNs and SAs. There are some small phase differences between them. SNs lag SAs during most of the considered time interval, and they are in general more asynchronous around the minimum and maximum times of a cycle than at the ascending and descending phases.  相似文献   

16.
K. J. Li 《Solar physics》2009,255(1):169-177
Five solar-activity indices – the monthly-mean sunspot numbers from January 1945 to March 2008, the monthly-mean sunspot areas during the period of May 1874 to March 2008, the monthly numbers of sunspot groups from May 1874 to May 2008, the monthly-mean flare indices from January 1966 to December 2006, and the numbers of solar filaments per Carrington rotation in the time interval of solar rotations 876 to 1823 – have been used to show a systematic time delay between northern and southern hemispheric solar activities in a cycle. It is found that solar activity does not occur synchronously in the northern and southern hemispheres, and there is a systematic time lag or lead (phase shift) between northern and southern hemispheric solar activity in a cycle. About an eight-cycle period is inferred to exist in such phase shifts. The activity on the Sun may be governed by two different and coupled processes, not by a single process.  相似文献   

17.
The results of an analysis of the north–south asymmetry in solar activity and solar magnetic fields are reported. The analysis is based on solar mean magnetic field and solar polar magnetic field time series, 1975–2015 (http://wso.stanford.edu), and the Greenwich sunspot data, 1875–2015 (http://solarscience.msfc.nasa.gov/greenwch.shtml). A long-term cycle (small-scale magnetic fields, toroidal component) of ~140 years is identified in the north–south asymmetry in solar activity by analyzing the cumulative sum of the time series for the north–south asymmetry in the area of sunspots. A comparative analysis of the variations in the cumulative sums of the time series composed of the daily values of the sun’s global magnetic field and in the asymmetry of the daily sunspot data over the time interval 1975–2015 shows that the photospheric large-scale magnetic fields may also have a similar long-term cycle. The variations in the asymmetry of large-scale and small-scale solar magnetic fields (sunspot area) are in sync until 2005.5 and in antiphase since then.  相似文献   

18.
We present data on the series of solar activity indices, Wolf sunspot numbers W and total sunspot areas S, obtained at the Kislovodsk high-altitude station of the Pulkovo Observatory. The problem of properly extending the 133-year-long Zürich series of W and the 102-year-long Greenwich series of S, which were discontinued in 1980 and 1976, respectively, is emphasized. We stress that the Kislovodsk data have retained mutual homogeneity with the classical series until now and that they are preferred for extension. The question under consideration is of fundamental importance in studying the solar activity variations on long time scales and related processes in the Sun-Earth system.  相似文献   

19.
Sunspot numbers are available for the past four centuries. However, solar activity indices with a longer time span are required by geophysicists and solar physicists. The yearly naked-eye sunspot number in the past is reconstructed using observations recorded in historical documents. Some studies from different solar proxies (including radiocarbon and aurora records) show the presence of the so-called Suess cycle (around 200 years) in solar variability. In this work, a modified Lomb–Scargle periodogram analysis is used to investigate the Suess cycle in naked-eye observations of sunspots during 200 BC–1918 AD. The most relevant characteristic of the periodogram is a cycle with a frequency very close to the Suess cycle, though this cycle is not significant statistically.  相似文献   

20.
We have investigated the correlation between the relative sunspot number and tilt of the heliospheric current sheet (HCS) in solar cycles 21–23. Strong and highly significant positive correlation (r > 0.8, P < 0.001) was found for corresponding data in the time interval from May 1976 through December 2004. Cross-correlation analysis does not reveal any time shift between the data sets. Reconstructed values of the HCS tilt, for the time interval before 1976, are found using sunspot numbers. To take different amplitude of solar cycles into account they were then normalized to zero in the minima of the solar activity and to average in solar cycles 21–23 maximal calculated HCS tilt in the maxima. These normalized reconstructed HCS data are compared with the angular positions of the brightest coronal streamers observed during total solar eclipses in 1870–2002, and their agreement is better for the minima of the solar activity than for the maxima.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号