首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Orion program is a project to develop a 2K × 2K infrared focal plane using InSb p-on-n diodes for detectors. It is the natural follow-up to the successful Aladdin 1K × 1K program started in the early 90's. The work is being done at the Raytheon Infrared Operations Division (RIO, previously known as the Santa Barbara Research Center) by many of the same people who created the Aladdin focal plane. The design is very similar to the successful Aladdin design with the addition of reference pixels, whole array readout (no quadrants), two-adjacent-side buttability, and a packaging design that includes going directly to the ultimate focal plane size of 4K × 4K. So far we have successfully made a limited number of hybrid modules with InSb detectors. In this paper we will describe the design features and test data taken from some of these devices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
4.
A 256×256 element InSb (indium antimonide) focal plane array has been specifically developed for use in ground-based astronomy. The array is an indium bump hybrid of a high-quality InSb detector array fabricated with an improved process, mated to a new, specially-designed low-background multiplexer. The performance parameters have been tuned to best reflect the requirements of ground based astronomy. The circuit is a direct readout detector integrator. It has a well size typically around 1,000,000 electrons, a readout rate of about 400kHz, and has an expected noise level of about 200 electrons.  相似文献   

5.
As the areas of CCD detectors and CCD mosaics have become larger and larger,the number of readout channels in astronomical cameras has increased accordingly to keep the image readout time within an acceptable range.For the large area cameras or the mosaic cameras,the analog Correlated Double Sampling(aCDS)circuit used in traditional astronomical cameras for suppressing readout noise is difficult to integrate into the camera controllers within the constraints of the space and energy consumption.Recently,digital CDS(dCDS)technology has been developed to solve this problem,which also offers novel analysis and noise suppression methods.In this study,a mathematical model is presented to conveniently analyze the frequency characteristic of a dCDS circuit,which is then simulated by a numerical method for investigating the noise suppression capability with different sampling weights.Importantly,using this model,the extreme point with lowest readout noise can be predicted for a certain dCDS model;and for a specific CCD readout frequency,readout noise can be suppressed by selecting the proper dCDS model.A testing system is then constructed for validating the efficiency of the proposed method.  相似文献   

6.
Astrosat is the first Indian satellite mission dedicated for astronomical studies. It is planned for launch during 2014 and will have five instruments for multi-wavelength observations from optical to hard X-rays. Cadmium Zing Telluride Imager (CZTI) is one of the five instruments aiming for simultaneous X-ray spectroscopy and imaging in the energy range of 10 keV to 100 keV (along with all sky photometric capability unto 250 keV). It is based on pixilated CZT detector array with total geometric area of 1024 cm2. It will have two-dimensional coded mask for medium resolution X-ray imaging. The CZT detector plane will be realized using CZT detector modules having integrated readout electronics. Each CZT detector module consists of 4 cm × 4 cm CZT with thickness of 5 mm which is further pixilated into 16 × 16 array of pixels. Thus each pixel has size of 2.5 mm × 2.5 mm and thickness of 5 mm. Such pixilated detector plane can in principle be used for hard X-ray polarization measurements based on the principle of Compton scattering by measuring azimuthal distribution of simultaneous events in two adjacent pixels. We have carried out detailed Geant4 simulations for estimating polarimetric capabilities of CZTI detector plane. The results indicate that events in the energy range of 100 keV to 250 keV, where the 5 mm thick CZT detector has significant detection efficiency, can be used for polarimetric studies. Our simulation results indicate the minimum detectable polarization (MDP) at the level of ~ 10% can be achieved for bright Crab like X-ray sources with exposure time of ~500 ks. We also carried out preliminary experiments to verify the results from our simulations. Here we present detailed method and results of our simulations as well as preliminary results from the experimental verification of polarimetric capabilities of CZT detector modules used in Astrosat CZTI.  相似文献   

7.
硅微条探测器空间分辨率高、工作性能稳定, 广泛地应用于空间高能粒子探测领域. 如费米gamma射线空间望远镜(Fermi Gamma-ray Space Telescope, FGST)以及阿尔法磁谱仪(Alpha Magnetic Spectrometer 2, AMS-02)的径迹探测器中都采用了高位置分辨率的硅微条探测器. 基于硅微条探测器在空间观测领域的应用前景, 针对硅微条探测器单元设计了一套低噪声的电子学读出系统. 整个电子学系统分为前端电子学、数据获取电路和上位机软件. 前端电子学为提高集成度, 采用了一款电荷读出芯片VATAGP8, 实现了多通道、低噪声的电荷信号测量; 数据获取电路使用现场可编程门阵列(Field Programmable Gate Array, FPGA)实现了对前端电子学的时序控制以及对测量信号的采集控制; 上位机用来接收、处理数据获取电路采集的信号数据. 在对电子学通道的线性、基线、噪声等性能进行测试之后, 得到系统在0--200fC电荷输入范围内的线性增益约为13.41bin/fC, 积分非线性小于1%, 噪声小于0.093fC. 为了验证电子学读出系统对硅微条探测器单元的读出能力, 将两者集成在一起并测试了宇宙线缪子的能量沉积, 得到读出电子学系统的信噪比大于32, 缪子的电离损失能谱与Landau-Gaussian分布符合较好, 能够满足硅微条探测器单元读出电子学的设计要求.  相似文献   

8.
The CdZnTe array detector is a new type of semiconductor detector being rapidly developed in recent years. It possesses a high spatial resolution and a high energy resolution, and it can work at room temperatures. This paper describes the physical properties and working principle of the CdZnTe array detector, as well as the manufacturing technology, including the chip pretreatment, passivation, ohmic electrode preparation, array template selection, and array packaging technology (micro-interconnection). For evaluating the perfor-mance of the detector, the authors have developed successfully a 4 pixel×4 pixel CdZnTe array and an 8 pixel×8 pixel CdZnTe array (with the thicknesses of 5 mm and 2 mm, the pixel size of 2 mm×2 mm, and the gaps of 0.15 mm and 0.2 mm, respectively) in cooperation with the partner. A multi-channel electronic readout system based on the ASIC (Application Specific Integrated Circuit) chip is devel-oped independently for the charge measurement of the 4 pixel×4 pixel CdZnTe array. The energy spectra and corresponding energy resolutions of the 16 pixels are obtained with the 137Cs radiative source, among them the best resolution is 4.8%@662 kev.  相似文献   

9.
The Hughes Technology Center (HTC) has developed a family of high-performance Si:As impurity-band conduction (IBC) hybrid focal plane arrays (FPAs) optimized for low background applications: 58×62 pixels (76-m pitch), 128×128 pixels (75- and 120-m pitch), and 256×256 pixels (30-m pitch). These FPAs exhibit state-of-the-art low noise (<100e -) achieved by using readout arrays fabricated on HTC's CryoCMOS process line. The IBC detector arrays, also fabricated at HTC, exhibit high quantum efficiency over a wide waveband with operating temperature of 4–12 K. In addition, Hughes is developing a 256×256 Si:As IBC FPA for high background applications as well as a 512×512 FPA. Readout development includes design and fabrication of 256×256 readouts with large well size of 1×107 e - for the high-background FPA and 512×512 readouts with moderate well size (1×106 e -).  相似文献   

10.
Astrophysical studies require accurate, sensitive and fast detectors to detect faint sources with high variability. Recently an array of Single Photon Avalanche Diodes (SPAD), SPADA, has been developed. This array is suitable for competitive adaptive optics operations and fast transient image acquisition at a fraction of the current cost of imaging arrays. The fabricated solid-state photon counters are rugged, easily integrated with the optics, free from readout noise, and have very fast frame rates (> 10 kHz, for visible corrections) with nanosecond electronic gating. In this paper, the following are described: the development of silicon monolithic arrays of 60 photon-counters, the detection electronics (based on integrated active quenching circuits for each pixel of the array), the real-time data-processing board implemented into FPGA and some aspects of the mechanical housing.  相似文献   

11.
We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.  相似文献   

12.
We have developed a wide-field mosaic CCD camera, MOA-cam3, mounted at the prime focus of the Microlensing Observations in Astrophysics (MOA) 1.8-m telescope. The camera consists of ten E2V CCD4482 chips, each having 2k×4k pixels, and covers a 2.2 deg2 field of view with a single exposure. The optical system is well optimized to realize uniform image quality over this wide field. The chips are constantly cooled by a cryocooler at ??80° C, at which temperature dark current noise is negligible for a typical 1–3 min exposure. The CCD output charge is converted to a 16-bit digital signal by the GenIII system (Astronomical Research Cameras Inc.) and readout is within 25 s. Readout noise of 2–3 ADU (rms) is also negligible. We prepared a wide-band red filter for an effective microlensing survey and also Bessell V, I filters for standard astronomical studies. Microlensing studies have entered into a new era, which requires more statistics, and more rapid alerts to catch exotic light curves. Our new system is a powerful tool to realize both these requirements.  相似文献   

13.
As part of the NASA Space Infrared telescope Facility (SIRTF), a low noise multiplexer has been developed. The hybridization of this multiplexer to a high indium antimonide (InSb) photodiode array has resulted in a MWIR detector of outstanding performance. The multiplexer is made of a 256×256 array of source follower amplifiers on a 30 m square pitch. Random access binary decoders are used to access each pixel of the array, allowing any read-out scheme to be implemented. Dark current has been measured at temperatures ranging from 4K to 77K. Generation recombination currents dominate above 45K. With 100mV of reverse bias applied, less than 3×10-17 A is typical below 50K with 8×10-19 A (5 e-/s) at 4K. Under the same conditions 0.25 pA was measured at 77K. Read noise has been measured as low as 186 e- using non-correlated techniques. Detector QE is 50 to 80 % through the entire 1 to 5 m band.  相似文献   

14.
The second decade of the third millennium will hopefully see a new generation of extremely large telescopes. These will have diameters from 30 to 100 meters and use advanced adaptive optics to operate at the diffraction limit in order to detect astronomical objects that are impossible to observe today, such as earth-like planets around nearby stars and the earliest objects in the Universe. Even for small fields of view, the requirements for detectors are daunting, with sizes of several gigapixels, very fast readout times and extremely low readout noise. In this paper I briefly review the science case for ELTs and the requirements they set on telescopes and instruments, and report on the status of the OWL 100 m telescope project and the challenges it poses.  相似文献   

15.
The system gain of two CCD systems in regular use at the Vainu Bappu Observatory, Kavalur, is determined at a few gain settings. The procedure used for the determination of system gain and base-level noise is described in detail. The Photometrics CCD system at the 1-m reflector uses a Thomson-CSF TH 7882 CDA chip coated for increased ultraviolet sensitivity. The gain is programme-selected through the parameter ‘cgain’ varying between 0 and 4095 in steps of 1. The inverse system gain for this system varies almost linearly from 27.7 electrons DN-1 at cgain = 0 to 1.5 electrons DN-1 at cgain = 500. The readout noise is ≲ 11 electrons at cgain = 66. The Astromed CCD system at 2.3-m Vainu Bappu Telescope uses a GEC P8603 chip which is also coated for enhanced ultraviolet sensitivity. The amplifier gain is selected in discrete steps using switches in the controller. The inverse system gain is 4.15 electrons DN-1 at the gain setting of 9.2, and the readout noise ∼ 8 electrons.  相似文献   

16.
Analytical theory is combined with extensive numerical simulations to compare different flavours of centroiding algorithms: thresholding, weighted centroid, correlation, quad cell (QC). For each method, optimal parameters are defined in function of photon flux, readout noise and turbulence level. We find that at very low flux the noise of QC and weighted centroid leads the best result, but the latter method can provide linear and optimal response if the weight follows spot displacements. Both methods can work with average flux as low as 10 photons per subaperture under a readout noise of three electrons. At high-flux levels, the dominant errors come from non-linearity of response, from spot truncations and distortions and from detector pixel sampling. It is shown that at high flux, centre of gravity approaches and correlation methods are equivalent (and provide better results than QC estimator) as soon as their parameters are optimized. Finally, examples of applications are given to illustrate the results obtained in the paper.  相似文献   

17.
Vector magnetic field synoptic charts from the Helioseismic and Magnetic Imager (HMI) are now available for each Carrington Rotation (CR) starting from CR 2097 in May 2010. Synoptic charts are produced using 720-second cadence full-disk vector magnetograms remapped to Carrington coordinates. The vector field is derived from the Stokes parameters (\(I, Q, U, V\)) using a Milne–Eddington-based inversion model. The \(180^{\circ}\) azimuth ambiguity is resolved using the minimum energy algorithm for pixels in active regions and for strong-field pixels (the field is greater than about 150 G) in quiet-Sun regions. Three other methods are used for the rest of the pixels: the potential-field method, the radial acute-angle method, and the random method. The vector field synoptic charts computed using these three disambiguation methods are evaluated. The noise in the three components of the vector magnetic field is generally much higher in the potential-field method charts. The component noise levels are significantly different in the radial-acute charts. However, the noise levels in the random-method charts are lower and comparable. The assumptions used in the potential-field and radial-acute methods to disambiguate the weak transverse field introduce bias that propagates differently into the three vector-field components, leading to unreasonable pattern and artifacts, whereas the random method appears not to introduce any systematic bias. The current sheet on the source surface, computed using the potential-field source-surface model applied to random-method charts, agrees with the best solution (the result computed from the synoptic charts with the minimum energy algorithm applied to each and every pixel in the vector magnetograms) much better than the other two. Differences in the synoptic charts determined with the best method and the random method are much smaller than those from the best method and the other two. This comparison indicates that the random method is better for vector field synoptic maps computed from near-central meridian data. The vector field synoptic charts provided by the Joint Science Operations Center (JSOC) are therefore produced with the random method.  相似文献   

18.
The conversion gain of optical and infrared focal plane CMOS hybrid arrays is a fundamental parameter, whose value computes into the derivation of other parameters characterizing the performance of a detector. The widespread “noise squared versus signal” method used to obtain the conversion gain can overestimate the nodal capacitance of the detector pixel by more than 20% for infrared arrays and by more than 100% for Si-PIN diode arrays. This is because this method does not take account of the capacitive coupling between neighboring pixels. A simple technique has been developed to measure the nodal capacitance directly by comparing the voltage change of an external calibrated capacitor with the voltage change on the nodal capacitor of the detector pixel. The method is elaborated in detail and has been verified with a Si-PIN diode array hybridized to a Hawaii-2RG multiplexer using an Fe 55 X-ray source. It is also in good agreement with a stochastic method based on 2D autocorrelation.  相似文献   

19.
CCD以其诸多优点,在天文观测中得到广泛应用。为了提高CCD性能,在实验室条件下,对国家天文台已有的CCD控制系统BIRAC,进行了温度对CCD采集电路性能影响的实验,以及板上A/D转换器误差校正,参考电压对噪声影响的研究。根据实验数据,得到上述各因素对CCD最终输出结果的影响程度,并提出与之对应的解决和优化方法。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号