首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
F.J. Ciesla 《Icarus》2009,200(2):655-671
Large-scale radial transport of solids appears to be a fundamental consequence of protoplanetary disk evolution based on the presence of high temperature minerals in comets and the outer regions of protoplanetary disks around other stars. Further, inward transport of solids from the outer regions of the solar nebula has been postulated to be the manner in which short-lived radionuclides were introduced to the terrestrial planet region and the cause of the variations in oxygen isotope ratios in the primitive materials. Here, both outward and inward transport of solids are investigated in the context of a two-dimensional, viscously evolving protoplanetary disk. The dynamics of solids are investigated to determine how they depend on particle size and the particular stage of protoplanetary disk evolution, corresponding to different rates of mass transport. It is found that the outward flows that arise around the disk midplane of a protoplanetary disk aid in the outward transport of solids up to the size of CAIs s and can increase the crystallinity fraction of silicate dust at 10 AU around a solar mass star to as much as ∼40% in the case of rapidly evolving disks, decreasing as the accretion rate onto the star slows. High velocity, inward flows along the disk surface aid in the rapid transport of solids from the outer disk to the inner disk, particularly for small dust. Despite the diffusion that occurs throughout the disk, the large-scale, meridonal flows associated with mass transport prevent complete homogenization of the disk, allowing compositional gradients to develop that vary in intensity for a timescale of one million of years. The variations in the rates and the preferred direction of radial transport with height above the disk midplane thus have important implications for the dynamics and chemical evolution of primitive materials.  相似文献   

2.
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.  相似文献   

3.
To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2–3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, which includes not just water but methane, ammonia, CO and 54 minor ices, we calculate the solid surface density of a possible giant planet-forming solar nebula as a function of heliocentric distance and time. Our results can be used to provide the starting planetesimal surface density and evolving solar nebula conditions for core accretion simulations, or to predict the composition of planetesimals as a function of radius. We find three effects that favor giant planet formation by the core accretion mechanism: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) the fact that the ammonia and water ice lines should coincide, according to recent lab results from Collings et al. [Collings, M.P., Anderson, M.A., Chen, R., Dever, J.W., Viti, S., Williams, D.A., McCoustra, M.R.S., 2004. Mon. Not. R. Astron. Soc. 354, 1133–1140], and (3) the presence of a substantial amount of methane ice in the trans-saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62–85] by a factor of 3–4 throughout the trans-saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.  相似文献   

4.
Abstract— In this paper, we explore the possibility that the moderately volatile element depletions observed in chondritic meteorites are the result of planetesimals accreting in a solar nebula that cooled from an initially hot state (temperatures > 1350 K out to ?2–4 AU). A model is developed to track the chemical inventory of planetesimals that accrete in a viscously evolving protoplanetary disk, accounting for the redistribution of solids and vapor by advection, diffusion, and gas drag. It is found that depletion trends similar to those observed in the chondritic meteorites can be reproduced for a small range of model parameters. However, the necessary range of parameters is inconsistent with observations of disks around young stars and other constraints on meteorite parent body formation. Thus, counter to previous work, it is concluded that the global scale evolution of the solar nebula is not the cause for the observed depletion trends. Instead, it appears that localized processing must be considered.  相似文献   

5.
We have constructed a model of the solar nebula that allows for the temperature and pressure distributions at various stages of its evolution to be calculated. The mass flux from the accretion envelope to the disk and from the disk to the Sun, the turbulent viscosity parameter α, the opacity of the disk material, and the initial angular momentum of the protosun are the input model parameters that are varied. We also take into account the changes in the luminosity and radius of the young Sun. The input model parameters are based mostly on data obtained from observations of young solar-type stars with disks. To correct the input parameters, we use the mass and chemical composition of Jupiter, as well as models of its internal structure and formation that allow constraints to be imposed on the temperature and surface density of the protoplanetary disk in Jupiter’s formation zone. Given the derived constraints on the input parameters, we have calculated models of the solar nebula at successive stages of its evolution: the formation inside the accretion envelope, the evolution around the young Sun going through the T Tauri stage, and the formation and compaction of a thin dust layer (subdisk) in the disk midplane. We have found the following evolutionary trend: an increase in the temperature of the disk at the stage of its formation, cooling at the T Tauri stage, and the subsequent internal heating of the dust subdisk by turbulence dissipation that causes a temperature rise in the formation zone of the terrestrial planets at the high subdisk density and the opacity in this zone. We have obtained the probable ranges of temperatures in the disk midplane, i.e., the temperatures of the protoplanetary material in the formation region of the terrestrial planets at the initial stage of their formation.  相似文献   

6.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   

7.
Abstract– Refractory materials, such as calcium‐aluminum‐rich inclusions (CAIs) and crystalline silicates, are widely found in chondritic meteorites as well as comets, taken as evidence for large‐scale mixing in the solar nebula. Most models for mixing in the solar nebula begin with a well‐formed protoplanetary disk. Here, we relax this assumption by modeling the formation and evolution of the solar nebula during and after the period when it accreted material from its parent molecular cloud. We consider how disk building impacts the long‐term evolution of the disk and the implications for grain transport and mixing within it. Our model shows that materials that formed before infall was complete could be preserved in primitive bodies, especially those that accreted in the outer disk. This potentially explains the discovery of refractory objects with low initial 26Al/27Al ratios in comets. Our model also shows that the highest fraction of refractory materials in meteorites formed around the time that infall stopped. Thus, we suggest that the calcium‐aluminum‐rich inclusions in chondrites would be dominated by the population that formed during the transition from class I to class II stage of young stellar objects. This helps us to understand the meaning of t = 0 in solar system chronology. Moreover, our model offers a possible explanation for the existence of isotopic variations observed among refractory materials—that the anomalous materials formed before the collapse of the parent molecular cloud was complete.  相似文献   

8.
The theory of viscous accretion disks developed by Lynden-Bell and Pringle has been applied to the evolution of the primitive solar nebula. The additional physical input needed to determine the structure of the disk is described. A series of calculations was carried out using a steady flow approximation to explore the effects on the disk properties of variations in such parameters as the angular momentum and accretion rate of the infalling material from a collapsing interstellar cloud fragment. The more detailed evolutionary calculations involved five cases with various combinations of parameters. It was concluded that the late stages of evolution of the disks would be dominated by the effects of mass loss from the expansion of a hot disk corona into space, and the effects of this were included in the evolutionary calculations. A new theory of comet formation is formulated upon these results. The most important result is the conclusion, which appears to be inescapable, that the primitive solar accretion disk was repeatedly unstable against axisymmetric perturbations, in which rings would form and collapse upon themselves, with the subsequent formation of giant gaseous protoplanets.  相似文献   

9.
F.J. Ciesla 《Icarus》2010,208(1):455-467
Refractory objects such as Calcium, Aluminum-rich Inclusions, Amoeboid Olivine Aggregates, and crystalline silicates, are found in primitive bodies throughout our Solar System. It is believed that these objects formed in the hot, inner solar nebula and were redistributed during the mass and angular momentum transport that took place during its early evolution. The ages of these objects thus offer possible clues about the timing and duration of this transport. Here we study how the dynamics of these refractory objects in the evolving solar nebula affected the age distribution of the grains that were available to be incorporated into planetesimals throughout the Solar System. It is found that while the high temperatures and conditions needed to form these refractory objects may have persisted for millions of years, it is those objects that formed in the first 105 years that dominate (make up over 90%) those that survive throughout most of the nebula. This is due to two effects: (1) the largest numbers of refractory grains are formed at this time period, as the disk is rapidly drained of mass during subsequent evolution and (2) the initially rapid spreading of the disk due to angular momentum transport helps preserve this early generation of grains as opposed to later generations. This implies that most refractory objects found in meteorites and comets formed in the first 105 years after the nebula formed. As these objects contained live 26Al, this constrains the time when short-lived radionuclides were introduced to the Solar System to no later than 105 years after the nebula formed. Further, this implies that the t=0 as defined by meteoritic materials represents at most, the instant when the solar nebula finished accreting significant amounts of materials from its parent molecular cloud.  相似文献   

10.
Most main sequence stars are binaries or higher multiplicity Systems and it appears that at birth most stars have circumstellar disks. It is commonly accepted that planetary systems arise from the material of these disks; consequently, binary and multiple systems may have a main role in planet formation. In this paper, we study the stage of planetary formation during which the particulate material is still dispersed as centimetre-to-metre sized primordial aggregates. We investigate the response of the particles, in a protoplanetary disk with radius RD = 100 AU around a solar-like star, to the gravitational field of bound perturbing companions in a moderately wide (300–1600 AU) orbit. For this purpose, we have carried out a series of simulations of coplanar hierarchical configurations using a direct integration code that models gravitational and viscous forces. The massive protoplanetary disk is around one of the components of the binary. The evolution in time of the dust sub-disk depends mainly on the nature (prograde or retrograde) of the relative revolution of the stellar companion, and on the temperature and mass of the circumstellar disk. Our results show that for binary companions near the limit of tidal truncation of the disk, the perturbation leads to an enhanced accretion rate onto the primary, decreasing the lifetime of the particles in the protoplanetary disk with respect to the case of a single star. As a consequence of an enhanced accretion rate the mass of the disk decreases faster, which leads to a longer resultant lifetime for particles in the disk. On the other hand, binary companions may induce tidal arms in the dust phase of protoplanetary disks. Spiral perturbations with m = 1 may increase in a factor 10 or more the dust surface density in the neighbourhood of the arm, facilitating the growth of the particles. Moreover, in a massive disk (0.01M⊙) the survival time of particles is significantly shorter than in a less massive nebula (0.001M⊙) and the temperature of the disk severely influences the spiral-in time of particles. The rapid evolution of the dust component found in post T Tauri stars can be explained as a result of their binary nature. Binarity may also influence the evolution of circumpulsar disks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We compute the growth of isolated gaseous giant planets for several values of the density of the protoplanetary disk, several distances from the central star and two values for the (fixed) radii of accreted planetesimals. Calculations were performed in the frame of the core instability mechanism and the solids accretion rate adopted is that corresponding to the oligarchic growth regime. We find that for massive disks and/or for protoplanets far from the star and/or for large planetesimals, the planetary growth occurs smoothly. However, notably, there are some cases for which we find an envelope instability in which the planet exchanges gas with the surrounding protoplanetary nebula. The timescale of this instability shows that it is associated with the process of planetesimals accretion. The presence of this instability makes it more difficult the formation of gaseous giant planets.  相似文献   

12.
Within the model of solid-body accumulation of planets (or their nuclei) the accumulation and migration of bodies from the feeding zones of the giant planets are investigated. The investigation is based on results of computer simulation of evolving disks which initially consisted of hundreds of particles moving about the Sun and coagulating under collisions. In some models the disks initially consisted of identical bodies. In other models they included also almost-formed planets. The computer simulation results as well as analytical investigations of the disk evolution depending on the number of particles in the disk allowed some estimates and conclusions on the accumulation process when the number of initial bodies was great (~ 106–1012). In this paper the characteristics of an initial protoplanetary circumsolar cloud, the body migration in the forming solar system, the planet orbit evolution, the formation of the beyond-Neptune belt and asteroid belts between the giant planet orbits are considered. The results obtained confirm many analytical estimates earlier made by V. S. Safronov and his colleagues.  相似文献   

13.
14.
Modern models of the formation of the regular satellites of giant planets, constructed with consideration for their structure and composition suggest that this process lasted for a considerable period of time (0.1–1 Myr) and developed in gas-dust circumplanetary disks at the final stage of giant planet formation. The parameters of protosatellite disks (e.g., the radial distribution of surface density and temperature) serve as important initial conditions for such models. Therefore, the development of protosatellite disk models that take into account currently known cosmochemical and physical restrictions remains a pressing problem. It is this problem that is solved in the paper. New models of the accretion disks of Jupiter and Saturn were constructed with consideration for the disk heating by viscous dissipation of turbulent motions, by accretion of material from the surrounding region of the solar nebula, and by radiation from the central planets. The influence of a set of input model parameters (the total rate of mass infall onto the disk, the turbulent viscosity and opacity of disk material, and the centrifugal radius of the disk) on thermal conditions in the accretion disks was studied. The dependence of opacity on temperature and the abundance and size of solid particles present in the disk was taken into account. Those constructed models that satisfy the existing constraints limit the probable values of input parameters (primarily rates of mass infall onto the disks of Jupiter and Saturn at the stage of regular satellite formation and, to a lesser extent, the disk opacities). Constraints on the location of the regions of formation of the major satellites of Jupiter and Saturn are suggested based on the constructed models and simple analytical estimates concerning the formation of satellites in the accretion disks. It is shown that Callisto and Titan could hardly be formed at significantly greater distances from their planets.  相似文献   

15.
We describe a model designed to track simultaneously the evolution of gas and solids in protoplanetary disks from an early stage, when all solids are in the dust form, to the stage when most solids are in the form of a planetesimal swarm. The model is computationally efficient and allows for a global, comprehensive approach to the evolution of solid particles due to gas–solid coupling, coagulation, sedimentation, and evaporation/condensation. We have used it to calculate the co-evolution of gas and solids starting from a comprehensive domain of initial conditions. Then based on the core accretion-gas capture scenario, we have estimated the planet-bearing capability of the environment defined by the final planetesimal swarm and the still evolving gaseous component of the disk. We describe how the disk's capability of formation of giant planets depends on the initial mass and size of a protoplanetary disk, its thermal structure, mass of the central star and properties of the material forming solid grains.  相似文献   

16.
In this paper we investigate both the global and the local hydrodynamics of axisymmetric accretion disks around young stellar objects under the simultaneous action of viscosity, self-gravity and pressure forces. For simplicity, we take for the global model a polytropic equation of state, make the infinitely thin disk approximation and characterize the surface density and temperature profiles in the disk as power laws in the radial distance r from the protostar. We solve the problem of the general density profile of a Keplerian disk showing that self-gravity could not be an important factor for the fast formation of the rocky cores of giant gaseous planets in our solar system. Under the hypothesis that the unperturbed rotation curve of the disk is nearly Keplerian throughout the radial extent, we can estimate with our polytropic model a lower limit for the resulting masses Md(r) of stable disks up to 100 AU. These masses are in the range of the so-called minimum mass solar nebular (d/Ms ≈ 0.01–0.02).By adopting a simplified viscosity model, where the height-integrated turbulent dynamical viscosity ν is a function of the surface density σ like η ∝ σΓ, we derive in the local shearing sheet model linearized evolution equations for small density perturbations describing both a diffusion process and the propagation of acoustic density waves. We solve a special initial value problem and calculate the appropriate Green's function. The analytical solutions so obtained describe in the case Γ < 0 the successive formation of quasi-stationary ring-shaped density structures in a disk with a definite mode of maximum instability, whereas in the case Γ > Γc the density wave equation describes the propagation of an “overstable” ring-shaped acoustic density wavelet to the outer ranges of the accretion disk. Whereas the group velocity of the wave packet is subsonic, the phase velocities of individual wave crests in the wave packet are supersonic. The mode of maximum instability, the growth rate and the number of growing waves in the wavelet are controlled by Γ and α. Our present knowledge concerning turbulent viscosity in protoplanetary disks is not sufficient to decide whether or not the case Γ > Γc is realized.The suggested structuring processes in the linear theory should initiate in the non-linear regime the formation of narrow ring-shaped density shock waves moving through the protoplanetary disk. These non-linear waves could produce extremely spatially and temporally heterogeneous temperature regions in the disk. We speculate that ring-shaped density waves, excited by inner boundary conditions and which have dominated the disk's evolution at early times, are responsible both for the fast growth of dust to planetesimals and at least for the rapid accretion of the rocky cores of giant gaseous planets in the protoplanetary accretion disk (shock wave trigger hypothesis). We derive provisional scaling rules for planetary systems regarding the spacing of orbits as a function of the mass ratio of the protoplanetary disk to the protostar. However, further analytical work and linear as well as nonlinear numerical simulations of density waves excited by inner boundary conditions are needed to consolidate the results and speculations of our linear wave mechanics in the future.  相似文献   

17.
As the Sun was forming, calcium–aluminum-rich inclusions (CAIs) were the first rocks to have condensed in the hottest regions of the solar nebula disk. Carbonaceous chondrites (CCs) contain abundant CAIs but are thought to have accreted in the outer Solar System, requiring that CAIs must have been transported outward. Curiously, CAIs are rare in ordinary, enstatite, rumuruti, and kakangari chondrites, non-carbonaceous chondrites (NCs), that likely formed in the inner Solar System. Thus, CAI abundances and characteristics can provide constraints on the early dynamical evolution of the disk. In this work, we address whether the hypothesis of an early-formed proto-Jupiter “opening a gap” in the disk can explain the dichotomy in the relative abundance of CAIs in CC and NC chondrites. We searched 76 NC meteorite sections to find 232 CAIs which have an average apparent diameter of 46 μm and comprise 0.01 area%, about half the size of and ~200 times less abundant than CC CAIs on average. Unlike CC CAIs, only 4% of the NC CAIs contain melilite and most contain alteration features suggesting that NC CAIs underwent pervasive fluid-assisted thermal metamorphism on asteroidal parent bodies. However, based on NC CAI populations correlating with meteorite metamorphic grade, we argue that disk dynamics is likely the primary reason behind the existence of small (<100 μm) and rare NC CAIs. Our data support astrophysical models which suggest that, after outward transport of CAIs, formation of a gap in the disk trapped CAIs in the outer Solar System.  相似文献   

18.
We discuss selected possibilities to detect planets in circumstellar disks. We consider the search for characteristic signatures in these disks caused by the interaction of giant planets with the disk as the most promising approach. Numerical simulations show that these signatures are usually much larger in size than the planet itself and thus much easier to detect. The particular result of the planet–disk interaction depends on the evolutionary stage of the disk. Primary signatures of planets embedded in disks are gaps in the case of young disks and characteristic asymmetric density patterns in debris disks.We present simulations which demonstrate that high spatial resolution observations performed with instruments/telescopes that will become available in the near future will be able to trace the location and other properties of young and evolved planets. These observations will allow to directly investigate the formation and evolution of planets in protoplanetary and debris disks.  相似文献   

19.
We present some results from our submillimeter single-dish and aperture synthesis imaging surveys of protoplanetary disks using the JCMT, CSO, and Submillimeter Array (SMA) on Mauna Kea, Hawaii. Employing a simple disk model, we simultaneously fit the spectral energy distributions and spatially resolved submillimeter continuum emission from our SMA survey to constrain disk structure properties, including surface density profiles and sizes. The typical disk structure we infer is consistent with a fiducial accretion disk model with a viscosity parameter α≈0.01. Combined with a large, multiwavelength single-dish survey of similar disks, we show how these observations provide evidence for significant grain growth and rapid evolution in the outer regions of disks, perhaps due to an internal photoevaporation process. In addition, we discuss SMA observations of the disks in the Orion Trapezium (proplyds) in the context of disk evolution in a more extreme environment.  相似文献   

20.
As planetary embryos grow, gravitational stirring of planetesimals by embryos strongly enhances random velocities of planetesimals and makes collisions between planetesimals destructive. The resulting fragments are ground down by successive collisions. Eventually the smallest fragments are removed by the inward drift due to gas drag. Therefore, the collisional disruption depletes the planetesimal disk and inhibits embryo growth. We provide analytical formulae for the final masses of planetary embryos, taking into account planetesimal depletion due to collisional disruption. Furthermore, we perform the statistical simulations for embryo growth (which excellently reproduce results of direct N-body simulations if disruption is neglected). These analytical formulae are consistent with the outcome of our statistical simulations. Our results indicate that the final embryo mass at several AU in the minimum-mass solar nebula can reach about ∼0.1 Earth mass within 107 years. This brings another difficulty in formation of gas giant planets, which requires cores with ∼10 Earth masses for gas accretion. However, if the nebular disk is 10 times more massive than the minimum-mass solar nebula and the initial planetesimal size is larger than 100 km, as suggested by some models of planetesimal formation, the final embryo mass reaches about 10 Earth masses at 3-4 AU. The enhancement of embryos’ collisional cross sections by their atmosphere could further increase their final mass to form gas giant planets at 5-10 AU in the Solar System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号