首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radionuclide activities were measured in the low‐background gamma‐ray spectrometry facility GeMSE in eight meteorite falls (Lost City, Tamdakht, Huaxi, Boumdeid, Xining, Kamargaon, Degtevo, and Ouidiyat Sbaa) and two finds (SaU 606 and Mürtschenstock) to evaluate the use of radionuclides for terrestrial age estimates. Results indicate that these meteorites were all derived from small‐ (r < 25 cm) to medium‐sized (r < 65 cm) meteoroids. Short‐lived 48V (t1/2 = 16.0 d) and 51Cr (t1/2 = 27.7 d) were only detected in Oudiyat Sbaa (EH), while 7Be (t1/2 = 53.1 d) was also detected in Degtevo (H) and Kamargaon (L), in agreement with reported fall dates. The 22Na/26Al activity ratio in Huaxi agrees with the previously reported short cosmic‐ray exposure age of this meteorite while 22Na/26Al in Kamargaon likely records a complex exposure history. Bayesian statistical analysis verifies the detection of very low activities of 44Ti (t1/2 = 60 a) in the relatively large H chondrites (>100 g) Degtevo, Huaxi, Tamdakht, Lost City, and SaU 606. Additionally, large samples from Oudiyat Sbaa (EH) and Kamargaon (L) gave positive detections. For H chondrite target compositions, detected 44Ti(Fe+Ni)/26Al averaged 0.055 ± 0.013. Activities of 22Na and 54Mn in SaU 606 show that this meteorite fell between July and September 2012, making SaU 606 the second recent fall from Oman identified using gamma‐ray spectrometry. The upper activity limit of 22Na in the Mürtschenstock meteorite shows that it fell prior to 1999 and is not related to a bolide observation in 2015. Mürtschenstock shows 137Cs ~10× higher than previously determined in Oman meteorites, likely due to Chernobyl fallout.  相似文献   

2.
Abstract– We describe the geological, morphological, and climatic setting of the San Juan meteorite collection area in the Central Depression of the Atacama Desert (Chile). Our recovery activities yielded 48 meteorites corresponding to a minimum of 36 different falls within a 3.88 km2 area. The recovery density is in the range 9–12 falls km?2 depending on pairing, making it the densest among meteorite collection areas in hot deserts. This high meteorite concentration is linked to the long‐standing hyperaridity of the area, the stability of the surface pebbles (> Ma), and very low erosion rates of surface pebbles (approximately 30 cm Ma?1 maximum). The San Juan meteorite population is characterized by old terrestrial ages that range from zero to beyond 40 ka, and limited weathering compared with other dense collection areas in hot desert. Chemical weathering in San Juan is slow and mainly controlled by the initial porosity of meteorites. As in the Antarctic and other hot deserts, there is an overabundance of H chondrites and a shortage of LL chondrites compared with the modern falls population, suggesting a recent (< few ka) change in the composition of the meteorite flux to Earth.  相似文献   

3.
We report on the first meteorite search campaign in the United Arab Emirates (UAE). The geology and proximity of our search region suggest that it is the north‐western extension of the Oman meteorite fields. We found 26 ordinary chondrites, bringing the total number of official meteorites from the UAE to 28. The campaign was organized and conducted in close cooperation with the UAE government and the main masses of the meteorites remained in the country where they will become part of an exhibition. The bulk composition of five meteorite and three soil samples indicates an uptake of U, Mo, Sr, Ba, Li, and Pb from the soil into the meteorites during terrestrial weathering. Terrestrial ages determined from 14C decay of 21 meteorites range from recent falls to 24.4 ka, with two meteorites having >37 ka and approximately 39 ka, respectively. Weak correlations between weathering degree, meteorite bulk chemical composition, and terrestrial age suggest highly localized weathering conditions, possibly related to abundant occurrences of sabkhas in the search region.  相似文献   

4.
We have investigated 128 14C‐dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section‐based weathering degrees, and for chemical weathering parameters as analyzed with handheld X‐ray fluorescence. These 128 14C‐dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age‐frequency distribution for the whole meteorite population.  相似文献   

5.
We describe the geological, geomorphological, and paleoclimatic setting of the Sahara of North Africa in particular, focused on the main meteorite dense collection areas (DCA; Morocco, Algeria, Tunisia, and Libya). We report on the outcome of several meteorite recovery field expeditions in Morocco and Tunisia since 2008, by car and by foot, that applied systematic search methods. The number of meteorites collected is 41 ordinary chondrites and one brachinite. The statistics of unpaired ordinary chondrites indicates that H chondrites are more abundant (21) than L chondrites (12), while LL chondrites are rare (2). Our meteorite density estimates for Tunisia and Morocco are in the order of magnitude of 1 met km?2. An estimate of the total maximum number of meteorites that could be recovered from the Sahara is 780,000 meteorites. We selected 23 meteorites from Aridal, Bou Kra, Bir Zar, and Tieret DCAs for 14C dating. The results show a wide range of terrestrial ages from 0.4 to more than 40 kyr with a majority of meteorites showing ages between 0.4 and 20 kyr. The weathering degree of these meteorites is ranges from minor (W1) to strong (W4). The highest weathering grades result from repeated oscillations between high and low humidity in the Sahara. However, there appears to be no correlation between weathering grade and terrestrial age of meteorites.  相似文献   

6.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

7.
We present for the first time a detailed report on the discovery of a new meteorite collection region in the Lut Desert, eastern–southeastern Iran, describing its geological, morphological, and climatic setting. Our search campaigns, alongside with the activity of meteorite hunters, yielded >200 meteorite finds. Here, we report on their classification, spatial distribution, and terrestrial weathering. All the collected meteorites are ordinary chondrites (OCs). The most abundant by far are the highly weathered paired H5 distributed in the northwest of Kalut area (central Lut, Kerman dense collection area). The second are well‐preserved paired L5 also found in Kalut region. A detailed study of the geochemistry and mineralogy of selected meteorites reveals significant effects of terrestrial weathering. Fe,Ni metal (hereafter simply metal) and troilite are transformed into Fe oxyhydroxides. A rather unusual type of troilite weathering to pyrite/marcasite is observed in most of the Lut Desert meteorites. Magnetic measurements and X‐ray diffractometry confirm the occurrence of terrestrial weathering products, with the dominance of maghemite, goethite, and hematite. Mobile elements, such as Li, Sr, Mo, Ba, Tl, Th, and U, are enriched with respect to fresh falls. Meanwhile, a decrease in the V, Cr, Co, Rb (and possibly Fe) due to terrestrial weathering is detectable. The total carbon and CaCO3 is higher than in samples from other hot deserts. The weathering effects observed in the Lut Desert OCs can be used as distinctive indicators to distinguish them from meteorites from other regions of the Earth. Measurements of terrestrial age (14C) show a range of 10–30 ka, which is in the range of ages reported for meteorites from other hot deserts except the Atacama Desert (Chile). Considering the high potential of the Lut Desert in meteorite preservation, systematic works should lead to the discovery of more samples giving access to interesting material for future studies.  相似文献   

8.
Abstract— We determined terrestrial ages of ordinary chondrites from the Lewis Cliff stranding area, East Antarctica, on the basis of the concentrations of cosmogenic 10Be (t½; = 1.51 Ma), 26Al (t½; = 0.705 Ma), and 36Cl (t½; = 0.301 Ma). After an initial 26Al γ-ray survey of 91 meteorites suggested that many have terrestrial ages >0.1 Ma, we selected 62 meteorites for 10Be and 26Al measurements by accelerator mass spectrometry (AMS) and measured 36Cl in twelve of those. Low terrestrial ages (<0.1 Ma) were found for ~60% of the meteorites, whereas all others have ages between 0.1 and 0.5 Ma, except for one exceptional age of >2 Ma (Welten et al., 1997). Our major conclusions are: (1) The Lewis Cliff H-chondrites show similar ages to those from the Allan Hills icefields, but the L-chondrites are about a factor of 2 younger than those from Allan Hills, which indicates that Lewis Cliff is a younger stranding area. (2) The terrestrial age distributions at different parts of the Lewis Cliff stranding area generally agree with simple meteorite concentration models, although differences in weathering rate may also play a role. (3) We confirm that meteorites with natural thermoluminescence (TL) levels >80 krad are associated with low terrestrial ages (Benoit et al., 1992) but conclude that natural TL levels <80 krad can not be used to calculate the terrestrial age of a meteorite. Natural TL levels do seem useful to estimate relative terrestrial ages of large groups of meteorites and to determine differences in the surface exposure age of paired meteorite fragments. (4) Of the 62 meteorites measured with AMS, 31 were assigned to 11 different pairing groups, mainly on the basis of their cosmogenic nuclide record. The meteorites are estimated to represent between 42 and 52 distinct falls.  相似文献   

9.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

10.
Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper‐arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe‐bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mössbauer spectroscopy study was complemented by synchrotron radiation X‐ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.  相似文献   

11.
We describe the geological, morphological, and climatic settings of two new meteorite collections from Atacama (Chile). The “El Médano collection” was recovered by systematic on‐foot search in El Médano and Caleta el Cobre dense collection areas and is composed of 213 meteorites before pairing, 142 after pairing. The “private collection” has been recovered by car by three private hunters and consists of 213 meteorites. Similar to other hot desert finds, and contrary to the falls and Antarctica finds, both collections show an overabundance of H chondrites. A recovery density can be calculated only for the El Médano collection and gives 251 and 168 meteorites larger than 10 g km?2, before and after pairing, respectively. It is by far the densest collection area described in hot deserts. The Atacama Desert is known to have been hyperarid for a long period of time and, based on cosmic‐ray exposure ages on the order of 1–10 Ma, to have been stable over a period of time of several million years. Such a high meteorite concentration might be explained invoking either a yet unclear concentration mechanism (possibly related to downslope creeping) or a previously underestimated meteorite flux in previous studies or an average terrestrial age over 2 Myr. This last hypothesis is supported by the high weathering grade of meteorites and by the common terrestrial fragmentation (with fragments scattered over a few meters) of recovered meteorites.  相似文献   

12.
Abstract— Fifty‐four fragments of ordinary chondrites from 50 finds representing all searched areas in central Oman and all weathering stages were selected to compare the physical, chemical, and mineralogical effect of terrestrial weathering with 14C terrestrial ages. 14C ages range from 2.0 to >49 kyr with a median value of 17.9 kyr. The peak of the age range, which is between 10–20 kyr, falls in an arid climate period. A comparison of the chemical composition of Omani chondrites with literature data for unweathered H and L chondrites demonstrates a strong enrichment in Sr and Ba, and depletion in S during weathering. Water contents in H chondrites increase with terrestrial age, whereas L chondrites show a rapid initial increase followed by nearly constant water content. Correlating Sr, Ba, and H2O with age indicates two absorption trends: i) an initial alteration within the first 20 kyr dominated by H2O uptake, mainly reflecting Fe‐Ni metal alteration, and ii) a second Ba‐and Sr‐dominated stage correlated with slower and less systematic weathering of troilite that starts after H2O reaches ?2 wt%. Sulfur released from troilite partly combines with Ba and Sr to form sulfate minerals. Other parameters correlated with 14C age are degree of weathering, color of powdered meteorites, and the Ni/Fe ratio. Chemical analyses of 145 soils show a high degree of homogeneity over the entire interior Oman Desert, indicating large‐scale mixing by wind. Soil samples collected from beneath meteorite finds typically are enriched in Ni and Co, confirming mobilization from the meteorites. High Cr and Ni concentrations in reference soil samples, which decrease from NE to SW, are due to detrital material from ultramafic rocks of the Oman Mountains.  相似文献   

13.
Results of nondestructive gamma‐ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Ko?ice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic‐ray particles in the space affecting radionuclides with different half‐lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre‐atmospheric radius of the meteoroid was 50 ± 5 cm. In two Ko?ice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble‐gas cosmic‐ray exposure age of the Ko?ice meteorite is 5–7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Ko?ice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long‐term average flux of galactic cosmic rays of 4.8 particles cm?2 s?1, whereas the short‐lived radionuclide activities are more consistent with a flux of 7.0 protons cm?2 s?1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.  相似文献   

14.
Enstatite chondrites and aubrites are meteorites that show the closest similarities to the Earth in many isotope systems that undergo mass‐independent and mass‐dependent isotopic fractionations. Due to the analytical challenges to obtain high‐precision K isotopic compositions in the past, potential differences in K isotopic compositions between enstatite meteorites and the Earth remained uncertain. We report the first high‐precision K isotopic compositions of eight enstatite chondrites and four aubrites and find that there is a significant variation of K isotopic compositions among enstatite meteorites (from ?2.34‰ to ?0.18‰). However, K isotopic compositions of nearly all enstatite meteorites scatter around the bulk silicate earth (BSE) value. The average K isotopic composition of the eight enstatite chondrites (?0.47 ± 0.57‰) is indistinguishable from the BSE value (?0.48 ± 0.03‰), thus further corroborating the isotopic similarity between Earth's building blocks and enstatite meteorite precursors. We found no correlation of K isotopic compositions with the chemical groups, petrological types, shock degrees, and terrestrial weathering conditions; however, the variation of K isotopes among enstatite meteorite can be attributed to the parent‐body processing. Our sample of the main‐group aubrite MIL 13004 is exceptional and has an extremely light K isotopic composition (δ41K = ?2.34 ± 0.12‰). We attribute this unique K isotopic feature to the presence of abundant djerfisherite inclusions in our sample because this K‐bearing sulfide mineral is predicted to be enriched in 39K during equilibrium exchange with silicates.  相似文献   

15.
Abstract– Although iron isotopes are increasingly used for meteorites studies, no attempt has been made to evaluate the effect of terrestrial weathering on this isotopic tracer. We have thus conducted a petrographic, chemical, and iron isotopic study of equilibrated ordinary chondrites (OC) recovered from hot Moroccan and Algerian Saharan deserts environment. As previously noticed, we observe that terrestrial desertic weathering is characterized by the oxidation of Fe‐Ni metal (Fe0), sulfide and Fe2+ occurring in olivine and pyroxene. It produces Fe‐oxides and oxyhydroxides that partially replace metal, sulfide grains and also fill fractures. The bulk chemical compositions of the ordinary chondrites studied show a strong Sr and Ba enrichment and a S depletion during weathering. Bulk meteoritic iron isotope compositions are well correlated with the degree of weathering and S, Sr, and Ba contents. Most weathered chondrites display the heaviest isotopic composition, by up to 0.1‰, which is of similar magnitude to the isotopic variations resulting from meteorite parent bodies’ formation and evolution. This is probably due to the release of isotopically light Fe2+ to waters on the Earth’s surface. Hence, when subtle Fe isotopic effects have to be studied in chondrites, meteorites with weathering grade above W2 should be avoided.  相似文献   

16.
Abstract— We have previously identified a subgroup of Antarctic H chondrites that are significantly different from H chondrites among the modern falls in terms of induced thermoluminescence (TL), metallographic cooling rate, and cosmogenic inert gas contents. Here we examine their terrestrial and thermal history as apparent in their natural TL and radioactive cosmogenic isotope abundances. These meteorites have a tendency towards high 26Al activities and fairly short 14C and 36Cl terrestrial ages (generally <100 ka). They also sometimes exhibit unusually high natural TL levels, which we have previously interpreted as indicating orbital evolution from perihelia >1.2 AU to ~1 AU within the last <105 years. We suggest that the nature of the meteorites falling to Earth is not independent of time but depends on stochastic events, such as the breakup of parent bodies and recent variations in orbit.  相似文献   

17.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

18.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   

19.
The Kumtag 016 strewn field was found in the eastern part of the Kumtag desert, Xinjiang Province, China. In this study, 24 recovered meteorites have been characterized by a suite of different analytical techniques to investigate their petrography, mineralogy, bulk trace elements, noble gas isotopic composition, density, and porosity. We attribute to the strewn field 22 L5 chondrites with shock stage S4 and weathering grade W2–W3. Two different meteorites, Kumtag 021, an L4 chondrite and Kumtag 032, an L6 chondrite, were recognized within the strewn field area. Moreover, Kumtag 003, an H5 chondrite, was previously found in the same area. We infer that the Kumtag 016 strewn field most likely consists of at least four distinct meteorite falls. The effects of terrestrial weathering on the studied meteorites involve sulfide/metal alteration, chemical changes (Sr, Ba, Pb, and U enrichments and depletion in Cr, Co, Ni, and Cs abundances), and physical modifications (decrease of grain density and porosity). Measurements of the light noble gases indicate that the analyzed Kumtag L5 samples contain solar wind-implanted noble gases with a 20Ne/22Ne ratio of ~12.345. The cosmic-ray exposure (CRE) ages of the L5 chondrites are in a narrow range (3.6 ± 1.4 Ma to 5.2 ± 0.4 Ma). For L4 chondrite Kumtag 021 and L6 chondrite Kumtag 032, the CRE ages are 5.9 ± 0.4 Ma and 4.7 ± 0.8 Ma, respectively.  相似文献   

20.
Abstract— We have measured a surprisingly long terrestrial age of 410,000 ±45,0020,000 yr (410 ±2045ka) for basaltic eucrite Río Cuarto 001 using accelerator mass spectrometry of 26Al, 36Cl, and 41Ca. Though many meteorites are known to have survived for tens or hundreds of ka in Antarctica or hot deserts, the mean annual precipitation of 815 mm in Río Cuarto, Cordoba Province, Argentina, makes the long survival of this meteorite remarkable. We propose two explanations for the exceptional preservation of Río Cuarto 001. First, the meteorite contains only trace amounts of metal, so the weathering and oxidation of metallic Fe, which commonly destroys chondrites, is ineffective in this case. Second, the meteorite was found in a relatively young deflation basin, and may have been exhumed only recently from beneath a protective layer of soil. Insofar as the survival on Earth of Río Cuarto 001 is due to environmental factors, there may be other meteorites with comparably long terrestrial ages still to be discovered in the vicinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号