首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
利用国家天文台微波(1.0-2.0 GHz和2.6-3.8GHz)射电频谱仪于1998年9月23日观测到了一个稀少事件,它是一个伴生多重周期脉动、Ⅲ型爆发和类I型噪暴的复杂射电Ⅳ型爆发,着重介绍该爆发所具有的多重长周期(约7.3、4.9、3.7、1.2和0.4分钟)脉动成分。这个长周期脉动可能是归因于在封闭环中的驻波模式,由于光球层速度场驱动的MHD的Alfven驻波横穿磁场,导致了对射电辐射的调制。此外,由于这些脉动存在向下的运动,也不排除在一个封闭环或开放场结构中传播的扰动引起振荡的可能性。因为Alfven波的共振与光球层5分钟振荡模式相联系,所以甚长周期的脉动可能来自光球层驱动源的假设,可以说明日冕磁环和光球层之间存在一个互相耦合的可能性。  相似文献   

2.
利用国家天文台云南天文台“分米波(700—1500MHz)射电频谱仪”和“四波段太阳射电高时间分辨率同步观测系统”分别于2001年6月24日和1990年7月30日观测到了两个稀少事件,前者是一个小射电爆发,其上升相伴随有短周期(约29、40和100毫秒)的脉动,后者是一个射电大爆发,在2840MHz上产生了周期约30毫秒的射电脉动,还着重讨论其甚短周期(如29—40毫秒)的脉动现象,甚短周期脉动可能是归因于起源在日冕深处不稳定区域的哨声波束周期链对射电辐射的调制,或沉降电子束驱动的静电高混杂波,经由波-波非线性相互作用导致甚短周期的射电脉动。  相似文献   

3.
从2004年10月起,国家天文台怀柔射电频谱仪增加了新的超高分辨率观测模式:在1.10~1.34 GHz频带其时间分辨率为1.25 ms,频率分辨率为4 MHz。报告了3个超高分辨率下观测到的太阳射电精细结构事件,包括射电尖峰辐射、鱼群结构和重叠的精细结构,在射电精细结构之后8~14 min,在米波段都发现射电II型爆发,3个事件的米波II型爆发(示踪着日冕激波)都有相关联的日冕物质抛射(Coronal Mass Ejection,CME)。  相似文献   

4.
对国家天文台2.6~3.8GHz频谱仪在第23太阳活动周上升段(1996~1998)记录到的Ⅲ型爆发,与日冕物质抛射(CME)作了统计分析。发现微波Ⅲ型爆发可能是CME的先兆现象,并讨论了它们的辐射机制。  相似文献   

5.
利用中国科学院国家天文台太阳射电动态频谱仪(1.0-2.0GHz和2.6-3.8GHz)在1998年9月23日观测到伴生Ⅲ型爆发群和I型噪爆的分米波Ⅳ型爆发,着重讨论在Ⅳ型爆发衰减相产生的I型噪爆,这个噪爆由许多I型爆发组成,每个I型爆的寿命约为:100~300ms,总持续时间大于11min,噪爆辐射的圆偏振度大于Ⅳ型连续辐射爆发,平均偏振度约为64%。这个I型噪爆可能类似于高偏振的Ⅲ型噪爆,其辐射机制可能归因于基波等离子体辐射。  相似文献   

6.
利用云南天文台声光频谱仪观测到的一次特殊的太阳射电米波爆发,与对应的光学活动及相关事件,我们探讨了1991年6月7日的日冕物质喷射 过程。  相似文献   

7.
基于我国的太阳射电宽带频谱仪(0.625~7.600GHz)在2003年10月22日~11月3日观测到8个伴生日冕物质抛射(CME)的太阳射电爆发,结合Nobeyama Radio Polarimeter(NORP)的单频观测、Nobeyama Radioheliograph (NORH)、Siberian Solar Radio Telescope(SSRT)的成像观测以及Culgoora和WAVE/WIND的低频射电频谱观测,对8个射电爆发的射电辐射特征进行了初步分析.试图从中寻找与CME伴生的射电爆发的特征。  相似文献   

8.
对国家天文台2.6~3.8GHz频谱仪在第23太阳活动周上升段(1996~1998)记录到的Ⅲ型爆发,与日冕物质抛射(CME)作了统计分析。发现微波Ⅲ型爆发可能是CME的先兆现象,并讨论了它们的辐射机制。  相似文献   

9.
利用云南天文台声光频谱仪观测到的一次特殊的太阳射电米波爆发 ,与对应的光学活动及相关事件 ,我们探讨了 1 991年 6月 7日的日冕物质喷射过程  相似文献   

10.
回顾了日冕磁的研究历史,介绍了我们首镒提出的日冕磁场的微波诊断方法及其应用的带来的启迪,提出进一步开展日冕磁场及其相关研究的建议。  相似文献   

11.
We present a new sub-class of type Ⅲ solar radio burst at the high frequencies around 6.0 GHz. In addition to a descending and an ascending branch on the dynamic spectrum, it has an inverted morphology different from the simpletype U-burst. We call it “partial N-burst“ because it is interpreted as the known N-burst minus its first branch. The partial N-burst presented here was detected among a reverse slope type Ⅲ (RS-Ⅲ) burst group prior to the type V solar radio continuum and was simultaneously recorded by two spectrometers at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, 5.20-7.60 GHz) and at Purple Mountain Observatory (PMO, 4.50-7.50 GHz) on 1999 August 25.After the N-burst and M-burst, the partial N-burst is a third piece of evidence for a magnetic mirror effect in solar radio observation, when the same electron is reflected at a pinched foot of a flare loop.  相似文献   

12.
We present a, large complex radio burst and its associated fast tune structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a bipolar, a tripolar (a 'bipolar + remote unipolar'), and a quadrupolar structure. This suggests that the radio burst is generated from a very complicated loop structure. According to the spectral and image observations, we assume that the beginning of this flare was caused by a single bipolar loop configuration with a 'Y-type' re-connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type III bursts, and slowly drifting and no-drift structures. The tripolar configurations may form a double-loop with a 'three-legged' structure, which is an important source of the various types of fast time structures. The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively. Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the 'inverted Y-type' (bipolar) and the 'three-legged' structures (tripolar or quadrupolar).  相似文献   

13.
Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other in- struments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole mag- netic structures. By examining the evolutions of the magnetic polarities of sources (17GHz), we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.  相似文献   

14.
A fine structure consisting of three almost equidistant frequency bands was observed in the high frequency part of a solar burst on 1998 April 15 by the spectrometer of Beijing Astronomical Observatory in the range 2.6-3.8GHz. A model for this event based on beam-anisotropic instability in the solar corona is presented. Longitudinal plasma waves are excited at cyclotron resonance and then transformed into radio emission at their second harmonic.The model is in accordance with the observations if we suppose a magnetic field strength in the region of emission generation of about 200G.  相似文献   

15.
马兵  陈玲  吴德金 《天文学报》2023,(3):35-233
与太阳射电爆发相比,通常认为频率较低的行星际射电爆发产生于远离低日冕的行星际空间.地球电离层的截止导致地基设备无法对其进行观测.美国国家航空航天局(National Aeronautics and Space Administration, NASA)发射的帕克太阳探测器(Parker Solar Probe, PSP)是迄今为止距离太阳最近的空间探测器.其搭载的射电频谱仪能够对10 k Hz–19.17 MHz频段范围内的射电辐射进行观测. PSP能够靠近甚至可能穿越行星际III型射电爆发的辐射源区,因此使用PSP对行星际射电爆发进行观测具有前所未有的优势.简要介绍了目前为止使用PSP的射电观测数据对行星际III型射电爆发的多方面研究,包括爆发的发生率、偏振、散射、截止频率、可能的辐射机制和相关的辐射源区等方面的研究进展,并讨论了其未来的研究前景.  相似文献   

16.
A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts   总被引:1,自引:0,他引:1  
The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave “patches”, unlike those reported previously, were observed with very short durations (about 300ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.  相似文献   

17.
Here we report a radio burst in absorption at 9?–?30 MHz observed with the UTR-2 telescope. This event occurred on 19 August 2003 about 11:16?–?11:26 UT, against solar type IV/II emission background. It is the first event where absorption was observed below 30 MHz. The absorption region, comparable with the solar radius size, traveled a long distance into the upper corona from the Sun. We show that the burst minimum corresponds to the almost full absorption of the solar radio emission up to a background level of the quiescent Sun. This supports the interpretation of the phenomenon as an absorption. The result is examined independently with the Nançay Decameter Array measurements and the Wind WAVES instrument records.  相似文献   

18.
We analyze the high-frequency drift radio structures observed by the spectrometer at Purple Mountain Observatory (PMO) over the frequency range of 4.5 – 7.5 GHz during the 18 March 2003 solar flare. The drifting structures take place before the soft X-ray maximum, almost at the maximum of hard X-ray flux at 25 – 50 keV. For the first time, the positive drift in this kind of radio structures is detected in such a high frequency range. Their global drifting rate is roughly estimated as 3.6 GHz s−1. They appear in four groups, lasting in total for less than 6 s, and have a broad bandwidth of more than 2 GHz but a smaller ratio of the bandwidth of the drifting structures to mean frequency than that of the lower frequency range. The lifetime of each individual burst in this event can be derived by using the high temporal resolution of the spectrometer at PMO and has an average value of 36.3 ms. Since the negative drifting structures observed in the 0.6 – 4.5 GHz frequency range were interpreted to be a radio signature of a plasmoid ejected upward (moving out of the Sun), the present observation may imply that it is possible for a plasmoid to move downward during a solar flare. However, for a confirmation of this suggestion direct radio imaging observation would be needed.  相似文献   

19.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号