首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large dishes used in solar radio astronomy are becoming an essential tool for the analysis of low level activity and fine time structures in solar bursts. Some front-end and back-end arrangements have been added to the Itapetinga 13.7-m radome-enclosed antenna to allow for simultaneous 22 GHz and 44 GHz observations; 22 GHz right- and left-handed circular polarization (or two linear orthogonal), with sensitivities of the order of 0.03 s.f.u., and time resolution of 1 ms. Full Sun maps can be obtained every 6 min, and selected active region maps every 3 min. Spatial angular definition of positions of active-region hot spots is close to 10 arc sec. This system is being used in a number of specific investigations, in SMM satellite related research, and in other internationally coordinated works. Examples of results are shown.In memoriam, 1942–1981.  相似文献   

2.
The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows one to obtain unique information about the primary energy release mechanisms in solar flares. The SSRT (Siberian Solar Radio Telescope) spatially resolved images and its high spectral and temporal resolution allow for direct determination not only of the source positions but also of the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when SSRT is observing the flare region in two high-order fringes near 5.7?GHz; thus, two 1D brightness distributions are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14?April 2002 is presented. Using multiwavelength radio observations recorded by the SSRT, the Huairou Solar Broadband Radio Spectrometer (SBRS), the Nobeyama Radio Polarimeters (NoRP), and the Radio Solar Telescope Network (RSTN), we study an event with series of several tens of drifting microwave pulses with drift rates in the range from ?7 to 13?GHz?s?1. The sources of the fast-drifting bursts were located near the top of a flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch anisotropy of the emitting electrons.  相似文献   

3.
This paper presents the results of a comparison between observations of coronal holes in UV (SOHO EIT) and radio emission (17, 5.7 GHz, 327 and 150.9 MHz, from NoRH, SSRT and Nançay radioheliographs), and solar wind parameters, from ACE spacecraft data over the period 12 March?–?31 May 2007. The increase in the solar wind velocity up to ~?600 km?s?1 was found to correlate with a decrease in the UV flux in the central parts of the solar disk. A connection between the parameters of the radio emission from three different layers of the solar atmosphere and the solar wind velocity near the Earth’s orbit was discovered. Such a connection is suggestive of a common mechanism of solar wind acceleration from chromospheric heights to the upper corona.  相似文献   

4.
1998年9月23 日复杂太阳爆发射电联合观测的初步分析   总被引:1,自引:1,他引:0  
利用北京天文台1998.09.23日1-2GHz和2.6-3.8GHz频谱仪观测到的一个Ⅲ-Ⅳ型复杂大爆发,结合俄罗斯SSRT和德国分米-米波动态频谱仪的观测资料,进行了初步的比对分析,拓展了关于日冕电子加速和日冕磁结构方面的一些研究内容,简单地注释了一些可研究的现象和运动Ⅳ型爆发及多重脉动的辐射机制。  相似文献   

5.
A 48 GHz five-radiometer front end was installed at the Cassegrain focus of the 13.7-m Itapetinga antenna for the observation of solar bursts. The system works with five beam patterns partly overlapping. The five antenna temperatures are recorded with a temporal resolution of 1 millisecond, including time and antenna position. The ratios of the incoming antenna signals are used to determine the centroid of burst emission. Its coordinates are determined from groups of three receivers by using a least-square fit. In favourable observing conditions we obtain an angular accuracy of about 2 arc sec (r.m.s.), with a time resolution of 1 ms and a sensitivity of 0.05 s.f.u. The accuracy of the antenna tracking, the absolute pointing and the quality of radio seeing at Itapetinga are discussed. A preliminary analysis of an impulsive solar burst event is used to illustrate the capabilities of the method described here.  相似文献   

6.
Ourmeterwavesolarradioacousto -opticalspectrograph(AOS)tracesbacktotheyear 1 979whenitwasbeingbuilt.TheAOScoversaworkingfrequencyrangeof 2 30~ 30 0MHz .Ithasthemeritsofhighspectralresolutionandgoodsensitivity .Thespectralresolution( 0 2 5MHz)de pendsonthecharacteris…  相似文献   

7.
We present new observations of O vi 1032 Å line profiles in polar plumes, and inter-plume regions, on the disk and above the limb in the north coronal hole obtained with the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) instrument on the SOHO (Solar and Heliospheric Observatory) spacecraft. On 22 May 1996, a 5 x 5 arc min spectroheliogram was scanned above the north polar coronal hole with the entrance slit extending from 1.03 to 1.33 solar radii with 1.5 arc sec spatial resolution and ≈ 0.044 Å per pixel spectral resolution in the wavelength range 1020–1040 Å. Detailed plume structure in O vi 1032 Å can be seen extending beyond 1.3 solar radii, with intensities in the plume regions 10–50% brighter, but line widths 10–15% narrower, than the inter-plume regions. Possible explanations for this observed anti-correlation between line width and intensity in the plume and inter-plume regions are discussed. We conclude that the source of the high-speed solar wind may not be polar plumes, but the inter-plume lanes associated with open magnetic field regions of the chromospheric network.  相似文献   

8.
The first published three-dimensional images of the solar X-ray corona, obtained by means of solar rotational parallax, are presented in stereographic form. Image pairs approximately 12 hours apart during times of stable coronal conditions were selected from the digitized images obtained with theSkylab X-ray Spectrographic Telescope. The image resolution limit is approximately 10 arc sec. Many coronal structures not visible in the separate images are clearly observed when the image pairs are viewed stereoscopically. This method gives a preview of the potential resources for solar research and forecasting of solar-geomagnetic interactions that could be provided by stereoscopic observations of the Sun using a small group of spacecraft. The method is also applicable to other X-ray, ultraviolet, or other wavebands in which the corona has extended, transparent structure.  相似文献   

9.
We compare the millimeter, microwave, and soft X-ray emission from a number of solar flares in order to determine the properties of the high-frequency radio emission of flares. The millimeter observations use a sensitive interferometer at 86 GHz which offers much better sensitivity and spatial resolution than most previous high-frequency observations. We find a number of important results for these flares: (i) the 86 GHz emission onset appears often to be delayed with respect to the microwave onset; (ii) even in large flares the millimeter-wavelength emission can arise in sources of only a few arc sec dimension; (iii) the millimeter emission in the impulsive phase does not correlate with the soft X-ray emission, and thus is unlikely to contain any significant thermal bremsstrahlung component; and (iv) the electron energy distributions implied by the millimeter observations are much flatter (spectral indices of 2.5 to 3.6) than is usual for microwave or hard X-ray observations.  相似文献   

10.
We describe an instrument we have built and installed at Mees Solar Observatory on Haleakala, Maui, to measure polarization in narrow-band solar images. Observations in Zeemansensitive photospheric lines have been made for nearly all solar active regions since the instrument began operations in 1992. The magnetograph includes a 28-cm aperture telescope, a polarization modulator, a tunable Fabry-Pérot filter, CCD cameras and control electronics. Stokes spectra of a photospheric line are obtained with 7 pm spectral resolution, 1 arc sec spatial resolution over a field 4.7 arc min square, and polarimetric precision of 0.1%. A complete vector magnetogram observation can be made every eight minutes. The flexibility of the instrument encourages diverse observations: besides active region magnetograms we have made, for example, composite vector magnetograms of the full solar disk, and H polarization movies of flaring regions.  相似文献   

11.
In this paper we discuss the two mechanisms by which solar prominences on the limb can manifest themselves when observed in coronal UV – EUV lines and in the soft X-ray continuum. These mechanisms are the absorption in the resonance continua of hydrogen and helium on one hand and the reduction of the emissivity in a part of the coronal volume occupied by a prominence on the other one. We briefly describe earlier observations made with SOHO/SUMER, EIT and Yohkoh/SXT. We then discuss how the instruments on the new Japanese satellite Hinode can be used for more detailed studies of prominences. We also propose some combined observations between the Hinode satellite and the SOHO/SUMER instrument.  相似文献   

12.
A New Solar Broadband Radio Spectrometer (SBRS) in China   总被引:1,自引:0,他引:1  
A new radio spectrometer, Solar Broadband Radio Spectrometer (SBRS) with characteristics of high time resolution, high-frequency resolution, high sensitivity, and wide frequency coverage in the microwave region is described. Its function is to monitor solar radio bursts in the frequency range of 0.7–7.6 GHz with time resolution of 1–10 ms. SBRS consists of five `component spectrometers' which work in five different wave bands (0.7–1.5 GHz, 1.0–2.0 GHz, 2.6–3.8 GHz, 4.5–7.5 GHz, and 5.2–7.6 GHz, respectively). A combination of multi-channel and scanning techniques is adopted. The component spectrometers are attached to different antennas which are separately located at Beijing, Kunming, and Nanjing. Close attention was paid to solve the problems of sensitivity, dynamic range, interference-resistance, data acquisition, and handling a large amount of data. The SBRS was put into operation in the 23th solar maximum activity period, and has proved itself to be a valuable instrument for the study of solar bursts in microwaves.  相似文献   

13.
The presence of solar coronal holes can be inferred from one-dimensional east-west scans at 692 and 1415 MHz. The scans indicate that coronal holes are stable structures with low-emissive characteristics and with lifetimes which can span several solar rotations, in agreement with observations using other techniques. This work focuses on the first half of 1973. The 1415 MHz data presented for this period show the radio analogues of two coronal holes, commonly referred to as CH1 and CH3. These holes were observed at soft X-ray and XUV wavelengths with the Skylab satellite and at EUV with the OSO-7 satellite. The analysis is then extended to cover the period from 1968 to 1974 with a central meridian passage date and a subjective classification being assigned to each coronal hole observation. This information is tabulated and provides a consistent set of coronal hole observations during the maximum and declining phases of solar cycle 20.  相似文献   

14.
The hardware and software for the observation of millisecond bursts with the Siberian solar radio telescope (SSRT) at 5.2 cm is described. The multiprocessing computer and data acquisition system records 180 analog signals from the SSRT multichannel receiver every 7 milliseconds. The recorded information opens the opportunity to study the position, structure, and other characteristics of solar burst sources with high temporal and spatial resolution. Examples of the observations are presented and briefly discussed in order to illustrate the overall performance of the system.  相似文献   

15.
A high-resolution microwave spectrometer has been developed by converting the Owens Valley solar interferometer to frequency-agile operation. The system uses 27 m antennas equipped with phase-locked receivers which can change their observing frequency in 25 or 50 ms. Microwave spectra between 1 and 18 GHz are obtained in a few seconds by successive observations at up to 86 discrete frequencies. At each frequency the data are equivalent to the total power from each antenna and the interferometric amplitude and phase. All data are fully calibrated with respect to cosmic sources.The instrument was motivated by the need for better microwave spectral resolution for the study of plasma parameters, non-thermal electrons and coronal magnetic field strengths in solar flares and active regions. Early observations with the system are illustrated by a sequence of flare spectra featuring cases with exceptionally narrow continuum bandwidths.  相似文献   

16.
Radio maps at 5 GHz with an angular resolution of 1 to 2 arcsec and a dynamic range ≳ 200:1 are presented for a sample of 45 radio quasars at redshifts between 0.2 and 1.5. The sources were imaged from observations made with the Very Large Array with the aim of investigating the epoch dependence of misalignments and asymmetries in their extended radio structure. Maps of some of the larger radio sources are presented also at a frequency of 1.5 GHz with a typical angular resolution of ≈ 4 arcsec. The radio structure of most of the quasars reported here has been delineated in considerably greater detail than available in the literature.  相似文献   

17.
We present a new system of two circular polarization solar radio telescopes, POEMAS, for observations of the Sun at 45 and 90 GHz. The novel characteristic of these instruments is the capability to measure circular right- and left-hand polarizations at these high frequencies. The two frequencies were chosen so as to bridge the gap at radio frequencies between 20 and 200 GHz of solar flare spectra. The telescopes, installed at CASLEO Observatory (Argentina), observe the full disk of the Sun with a half power beam width of 1.4°, a time resolution of 10 ms at both frequencies, a sensitivity of 2?–?4 K that corresponds to 4 and 20 solar flux unit (=104 Jy), considering aperture efficiencies of 50±5 % and 75±8 % at 45 and 90 GHz, respectively. The telescope system saw first light in November 2011 and is satisfactorily operating daily since then. A few flares were observed and are presented here. The millimeter spectra of some flares are seen to rise toward higher frequencies, indicating the presence of a new spectral component distinct from the microwave one.  相似文献   

18.
We present results of the first simultaneous observations of zebra patterns (ZPs) with super-fine spiky structure in the microwave range made at two observatories ~1000 km apart (Beijing and Nanjing, China). The fine structure was recorded by a spectra polarimeter in the 5.2 – 7.6 and 2.8 – 3.6 GHz ranges at the Huairou station and by the spectrometer in the 4.5 – 7.5 GHz range at the Purple Mountain Observatory. Simultaneously, the locations of radio sources were observed by the Siberian Solar Radio Telescope (SSRT) at 5.7 GHz. For a general analysis of the April 10, 2001 event, the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) data and Transition Region and Coronal Explorer (TRACE) images in EUV 171 Å line were used. The circular polarization degree was very weak for the burst background radio emission and moderate to strong for the fine structure. The polarization sign in all the cases probably corresponds to the extraordinary wave mode. Estimations of the magnetic field values in the whistler model for fine structure agree well with the extrapolated values from magnetic maps. Given the possibility of wave transformation in the perpendicular magnetic field and the spiky structure of the ZP, the whistler wave model appears to be the most appropriate explanation for the zebra stripe phenomenon.  相似文献   

19.
The main aim of this paper is to estimate, from multispectral observations, the plasma parameters in a microwave burst source which was also the site of spike emission. This information is essential for the determination of the spike emission process. By analyzing one-dimensional source distributions observed with the SSRT at 5.7 GHz and correlating them with Yohkoh X-ray and Nobeyama 17 GHz images, we have concluded that the microwave emitting region was larger than the soft X-ray loop-top source, and that the origin of the burst could be explained by gyrosynchrotron emission of non-thermal electrons in a magnetic field of approximately 100 G. It has been shown that the source of 5.7 GHz spikes observed during the burst was located close to an SXR-emitting loop with high density and temperature and a relatively low magnetic field. Thus, plasma emission is the most favourable radiation mechanism for the generation of the sub-arc-second microwave pulses.  相似文献   

20.
The transition region and coronal explorer   总被引:5,自引:0,他引:5  
Handy  B.N.  Acton  L.W.  Kankelborg  C.C.  Wolfson  C.J.  Akin  D.J.  Bruner  M.E.  Caravalho  R.  Catura  R.C.  Chevalier  R.  Duncan  D.W.  Edwards  C.G.  Feinstein  C.N.  Freeland  S.L.  Friedlaender  F.M.  Hoffmann  C.H.  Hurlburt  N.E.  Jurcevich  B.K.  Katz  N.L.  Kelly  G.A.  Lemen  J.R.  Levay  M.  Lindgren  R.W.  Mathur  D.P.  Meyer  S.B.  Morrison  S.J.  Morrison  M.D.  Nightingale  R.W.  Pope  T.P.  Rehse  R.A.  Schrijver  C.J.  Shine  R.A.  Shing  L.  Strong  K.T.  Tarbell  T.D.  Title  A.M.  Torgerson  D.D.  Golub  L.  Bookbinder  J.A.  Caldwell  D.  Cheimets  P.N.  Davis  W.N.  Deluca  E.E.  McMullen  R.A.  Warren  H.P.  Amato  D.  Fisher  R.  Maldonado  H.  Parkinson  C. 《Solar physics》1999,187(2):229-260
The Transition Region and Coronal Explorer (TRACE) satellite, launched 2 April 1998, is a NASA Small Explorer (SMEX) that images the solar photosphere, transition region and corona with unprecedented spatial resolution and temporal continuity. To provide continuous coverage of solar phenomena, TRACE is located in a sun-synchronous polar orbit. The ∼700 Mbytes of data which are collected daily are made available for unrestricted use within a few days of observation. The instrument features a 30-cm Cassegrain telescope with a field of view of 8.5×.5 arc min and a spatial resolution of 1 arc sec (0.5 arc sec pixels). TRACE contains multilayer optics and a lumogen-coated CCD detector to record three EUV wavelengths and several UV wavelengths. It observes plasmas at selected temperatures from 6000 K to 10 MK with a typical temporal resolution of less than 1 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号