首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raymond E. Arvidson 《Icarus》1974,22(3):264-271
A computer data bank containing information on crater sizes, locations, and morphologies for all craters visible on Mariner 9 wide-angle mapping photography was used to construct a crater morphologic classification. Four general classes were constructed that can be interpreted to represent increasing degrees of crater degradation. Fresh class craters are nearly unmodified and consist of deep bowl-shaped craters and deep, flat-floored craters with terraced walls. The slightly modified class consists of deep flat-floored craters that usually have raised rims, but lack the terracing, central peaks, and hummocky floors indicative of unmodified impact crater morphology. Craters in the modified class are rimless and shallow and those in the ghost class are rimless and extremely shallow. Retention ages for fresh (i.e. unmodified) class craters on equatorial cratered terrain range from millions to billions of years, depending on the impact flux history used. If the trend is toward billions of years, then present degradation rates on Mars are low relative to earlier history and most craters in the degraded classes were probably modified in an early (>3.3 b.y.?) period.  相似文献   

2.
Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. We propose that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters.The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance.We propose that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.  相似文献   

3.
The existence of large terrestrial impact crater doublets and Martian crater doublets that have been inferred to be impact craters demonstrates that simultaneous impact of two or more bodies occurs at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and central peaks, circular craters with flat floors containing ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.  相似文献   

4.
Reta F. Beebe 《Icarus》1980,44(1):1-19
The simple-to-complex transition for impact craters on Mars occurs at diameters between about 3 and 8 km. Ballistically emplaced ejecta surround primarily those craters that have a simple interior morphology, whereas ejecta displaying features attributable to fluid flow are mostly restricted to complex craters. Size-dependent characteristics of 73 relatively fresh Martian craters, emphasizing the new depth/diameter (d/D) data of D. W. G. Arthur (1980, to be submitted for publication), test two hypotheses for the mode of formation of central peaks in complex craters. In particular, five features appear sequentially with increasing crater size: first flat floors (3–4 km), then central peaks and shallower depths (4–5 km), next scalloped rims (? km), and lastly terraced walls (~8 km). This relative order indicates that a shallow depth of excavation and an unspecified rebound mechanism, not centripetal collapse and deep sliding, have produced central peaks and in turn have facilitated failure of the rim. The mechanism of formation of a shallow crater remains elusive, but probably operates only at the excavation stage of impact. This interpretation is consistent with two separate and complementary lines of evidence. First, field data have documented only shallow subsurface deformation and a shallow transient cavity in complex terrestrial meteorite craters and in certain surface-burst explosion craters; thus the shallow transient cavities of complex craters never were geometrically similar to the deep cavities of simple craters. Second, the average depths of complex craters and the diameters marking the transition from simple to complex craters on Mars and on three other terrestrial planets vary inversely with gravitational acceleration at the planetary surface, g, a variable more important in the excavation of a crater than in any subsequent modification of its geometry. The new interpretation is summarized diagrammatically for complex craters on all planets.  相似文献   

5.
P. Michel  D.P. O'Brien  S. Abe  N. Hirata 《Icarus》2009,200(2):503-513
In this paper, we study cratering and crater erasure processes and provide an age estimate for the near-Earth Asteroid (25143) Itokawa, the target of the mission Hayabusa, based on its crater history since the time when it was formed in the main belt by catastrophic disruption or experienced a global resetting event. Using a model which was applied to the study of the crater history of Gaspra, Ida, Mathilde and Eros [O'Brien, D.P., Greenberg, R., Richardson, J.E., 2006. Icarus 183, 79–92], we calculate the time needed to accumulate the craters on Itokawa's surface, taking into account several processes which can affect crater formation and crater erasure on such a low-gravity object, such as seismic shaking. We use two models of the projectile population and two scaling laws to relate crater diameter to projectile size. Both models of the projectile population provide similar results, and depending on the scaling law used, we find that the time necessary to accumulate Itokawa's craters was at least ∼75 Myr, and maybe as long as 1 Gyr. Moreover, using the same model and similar parameters (scaled accordingly), we provide a good match not only to Itokawa's craters, but also to those of Eros, which has also been imaged at high enough resolution to give crater counts in a similar size range to those on Itokawa. We show that, as for Eros, the lack of small craters on Itokawa is consistent with erasure by seismic shaking, although for Itokawa, the pronounced deficiency of the smallest craters (<10 m in diameter) requires another process or event in addition to just seismic shaking. A small body such as Itokawa is highly sensitive to specific events that may occur during its history. For example, the two parts of Itokawa, called head and body, may well have joined each other by a low-velocity impact within the last hundred thousand years [Scheeres, D.J., Abe, M., Yoshikawa, M., Nakamura, R., Gaskell, R.W., Abell, P.A., 2007. Icarus 188, 425–429]. In addition to providing an erasure mechanism for small craters, the proposed timescale of that event is consistent with the timescale necessary in our model to form the current, depleted population of just a few small (<10 m) craters on Itokawa, suggesting that it may be the explanation for the discrepancy between Itokawa's cratering record and that obtained from our equilibrium seismic shaking model. Other explanations for the depletion of the smallest craters on Itokawa, such as armoring by boulders lying on the surface, cannot be ruled out.  相似文献   

6.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   

7.
Abstract– Previous workers have proposed that a northern ocean existed early during Martian geologic history and the shorelines of that ocean would coincide roughly with the crustal dichotomy that divides the smooth, northern lowlands with the cratered, southern highlands. Arabia Terra is a region on Mars that straddles the crustal dichotomy, and several proposed shorelines are located in the area. Shallow marine impact craters on Mars likely would exhibit features like those on Earth, including characteristic morphological features that are distinctly different from that of craters formed on land. Common attributes of terrestrial marine impact craters include features of wet mass movement such as gravity slumps and debris flows; radial gullies leading into the crater depression; resurge deposits and blocks of dislocated materials; crater rim collapse or breaching of the crater wall; a central peak terrace or peak ring terrace; and subdued topography (an indicator of both age and possible flood inundation immediately following impact). In this article, these features have been used to evaluate craters on Mars as to a possible marine origin. This study used a simple quantification system to approximately judge and rank shallow marine impact crater candidates based on features observed in terrestrial analogs. Based on the quantification system, 77 potential shallow marine impact craters were found within an area bounded by 20°N and 40°N as well as 20°W and 20°E. Nine exemplary candidates were ranked with total scores of 70% or more. In a second, smaller study area, impact craters of approximately similar size and age were evaluated as a comparison and average total scores are 35%, indicating that there is some morphological difference between craters inside and outside the proposed shorelines. Results of this type of study are useful in helping to develop a general means of classification and characterization of potential marine craters.  相似文献   

8.
We studied north Tyrrhena Terra, an approximately 39,000 km2 area, located in the transition region straddling the Amenthes and Mare Tyrrhenum Mars Chart quadrangles 14 and 22, respectively. The study area comprises ancient terrains with infilled craters, ridges and valleys. Interpretation of orbiter data of ancient terrains is inherently difficult, but valuable information can be obtained using multiple datasets and analyzing various geological features. Using data from the High Resolution Stereo Camera on board Mars Express, complemented by Mars Global Surveyor MOLA DEM and MOC Narrow Angle datasets, we observed and interpreted surface morphologies at a scale suitable for geologic investigation. Morphometric examination of a 31 km diameter large impact crater indicated that tectonism and volcanism were responsible for its morphologic modification. Small impact crater depth/diameter relationships indicated that smooth surfaces of valleys are composed of highly consolidated material. Surface cracks and lobate fronts further suggested that the rocks are volcanic. Examination of tectonic features revealed that in the study area: a dominant NW-SE fabric is related to a ridge/bench-scarp-valley repetition consistent with synthetic and antithetic normal faulting; a NNW-SSE lineament represents the surface expression of normal faulting post-dating all other tectonic features. A weak NE-SW fabric is observable as small sublinear depressions, and at the contact between units internal to one large crater. One 20 km diameter crater in the study area was interpreted to be a caldera, infilled by thick volcanic rock layers. Identification of wrinkle ridges further indicated that thick layered lava flows infilled the main depressions of the study area. The available evidence suggests that the study area underwent multiple episodes of extension and volcanism.  相似文献   

9.
Hiroyuki Sato  Kei Kurita 《Icarus》2010,207(1):248-264
Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.  相似文献   

10.
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter (∼125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater size-frequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone.  相似文献   

11.
E.M. Parmentier  J.W. Head 《Icarus》1981,47(1):100-111
Spacecraft images show that the icy Galilean satellites have surfaces with very low topographic relief. Impact craters on Ganymede and Callisto are anomalously shallow and are characterized by sharp well-defined rims and domed floors. These morphological characteristics can be explained by viscous relaxation of topography on an icy crust in which the viscosity is uniform or decreases with depth. Under these conditions, large craters relax more rapidly than small craters, therefore explaining a possible underabundance of large craters. Viscous relaxation on an icy crust that is thin compared to the crater diameter or on a thick icy crust in which viscosity increases with depth could not produce this crater morphology and would result in the more rapid relaxation of small craters rather than large craters. The results of this study suggest that more detailed analysis of relaxing impact crater morphology may resolve the rate of viscosity decrease with depth and so provide evidence on the interior thermal evolution of icy planetary bodies.  相似文献   

12.
The about 10.5 km diameter Bosumtwi impact crater is one of the youngest large impact structures on Earth. The crater rim is readily noticed on topographic maps or in satellite imagery. It defines a circular basin filled by water (Lake Bosumtwi) and lacustrine sediments. The morphology of this impact structure is also characterized by a circular plateau extending beyond the rim and up to 9–10 km from the center of the crater (about 2 crater radii). This feature comprises a shallow ring depression, also described as an annular moat, and a subdued circular ridge at its outer edge. The origin of this outermost feature could so far not be elucidated based on remote sensing data only. Our approach combines detailed topographic analysis, including roughness mapping, with airborne radiometric surveys (mapping near‐surface K, Th, U concentrations) and field observations. This provides evidence that the moat and outer ring are features inherited from the impact event and represent the partially eroded ejecta layer of the Bosumtwi impact structure. The characteristics of the outer ridge indicate that ejecta emplacement was not purely ballistic but requires ejecta fluidization and surface flow. The setting of Bosumtwi ejecta can therefore be considered as a terrestrial analog for rampart craters, which are common on Mars and Venus, and also found on icy bodies of the outer solar system (e.g., Ganymede, Europa, Dione, Tethys, and Charon). Future studies at Bosumtwi may therefore help to elucidate the mechanism of formation of rampart craters.  相似文献   

13.
Crater morphology and size play a major role in determining whether wind-blown streaks emanating from craters or dark splotches within craters will form. Both bright and dark streaks emanate almost exclusively from bowl-shaped craters. Dark splotches are found mainly in flat-floored craters, especially those that are deep and have high rim relief. Trends of dark splotches in the northern to southern midlatitudes closely follow those of bright streaks, suggesting both were formed by similar winds. In the high southern latitudes, on the other hand, dark splotch trends closely follow those of dark streaks.Qualitative models of streak and splotch formation have been derived from these data and results of Sagan et al. (1972, 1973). Bright streaks probably form by trapping and simultaneous streaming of bright dust downwind. Dark splotched craters in regions with bright streaks usually have upwind bright patches, suggesting these features form by dumping of bright dust over crater rims with some minor redistribution of dark materials toward the downwind sides of craters. Data are consistent with dark streaks forming by erosion or nondeposition of bright material or by trapping of dark material. Dark splotches in these regions are probably mainly the result of trapping of dark sand in the downwind sides of crater floors. Craters with dark splotches and dark streaks are usually rimless and shallow. This is consistent with ponded dark sands easily washing over crater walls and extending downwind.Plots of streak length versus crater diameter suggest a complex history of streak formation for most regions.Bright streak trends and latitudinal distributions are consistent with return flow of dust to the southern hemisphere. Some dark streaks may be direct relics of passing sand and dust storms. Trends of dark streaks and splotches away from the south pole are consistent with the spreading of a debris mantle from the polar regions toward the equator.  相似文献   

14.
Comparing craters of identical diameter on a planet is an empirical method of studying the effects of different target and impactor properties while holding total impact energy nearly constant. We have analyzed the Martian crater population within a narrow diameter range (7 km < crater diameter < 9 km) at the simple‐complex crater transition using three approaches. We looked for correlations of morphology with surface geology using a global crater database and global geologic map. We examined selected regions in detail with high‐resolution images to further understand the relationship between crater morphology and bulk target properties. Finally, we examined craters in close proximity to each other in order to hold target properties constant, so that we could isolate impactor effects on crater morphology. We found a strong correlation between target properties and interior crater morphology, and we found little evidence that impactor properties (other than impact angle) affect crater appearance. Central uplift and wall slumping are enhanced for less consolidated targets. Layered targets affected both the excavation and modification stages of complex crater formation; the resulting craters have pseudoterraces, flat floors, and central pits.  相似文献   

15.
The surface topography of Asteroid 25143 Itokawa is explored using the LIght Detection And Ranging instrument (LIDAR). The data confirm the presence of a rough highland and a smooth lowland. The highland is dominated by boulders, but also possesses topography associated with surface lineaments and broad surface facets. The boulders ensure that the roughness of the highlands over short distances is typically greater relative to most surfaces on 433 Eros. Over larger distances, Itokawa is always smoother than Eros possibly because of its smaller size and weak rubble-pile structure. The lowlands of Itokawa are very smooth, and are typically devoid of boulders. Some transitional regions midway between the highlands and lowlands also exist. In these areas, craters that retain their regolith fill possess flat floors and resemble “ponds” seen on 433 Eros. Analyses of surface elevation, imagery and a quantitative measure of surface roughness are consistent with regolith flowing downhill from the highlands to fill in the low areas of Itokawa, probably covering up any pre-existing rough terrain. Using this interpretation, we find a minimum 2.3±0.4 m thick layer of regolith in the lowlands, which, if spread evenly across the entire asteroid, corresponds to a 42±1 cm thick layer. It is very difficult to generate this amount of regolith with the population of craters seen on Itokawa. However, an Itokawa composed of several large masses may have retained this regolith during its formation. The presence of such large masses could account for the observed lineaments and what appear to be exposures of bedrock on the largest steep slope observed.  相似文献   

16.
The Characteristics of Polygonal Impact Craters on Venus   总被引:1,自引:0,他引:1  
Polygonal impact craters (PICs) are craters whose shape in plan view is more or less angular instead of being circular or ellipsoidal. This type of craters are present and often common on the Moon, Mercury, Mars and several asteroids and icy moons and after the careful analysis we found on Venus 131 impact craters, which show at least two straight rim segments. This survey proves that there are polygonal impact craters on Venus and they may provide a good tool to analyse the properties of the planet’s surface/crust/lithosphere as well as the impact process itself. This study also collaborates our previous results, that PICs are not an anomaly among craters, but an integral part of all impact craters regardless of their size or environment. We compared the polygonal impact craters to “normal”-shaped craters by using different characteristics (diameter, altitude, geologic setting, morphologic class, floor reflectance, degradation stage, and wall terracing). It turned out that the smaller crater sizes favor the formation of straight rim segments, but otherwise these craters show similar characteristics to other craters. Our study also shows that there are regions where the straight segments of the crater rims most clearly follow the orientations of the dominant tectonic features of the area. Thus, the orientations of crater walls reflect–at least in some places–the local tectonics and zones of weakness also on Venus and could thus tell us about the directions and distributions of fractures or other zones of weakness in the crust.  相似文献   

17.
Abstract— The 45-km diameter Montagnais impact structure, Nova Scotia, Canada, is characterized by a positive, circular 8 mGal gravity anomaly associated with its central uplift. The negative gravity anomaly, which is expected for a complex crater of this size, is not observed within the structure, and magnetic data lack any well-defined, crater-related signature. The absence of a negative gravity anomaly implies that no low-density zone generally related to fracturing and brecciation exists. Since Montagnais appears well preserved, this zone has not been removed by erosion. Its formation may have been impeded due to the lack of competency in the target rocks. The crater was formed in a shallow marine environment where the lack of strength in the unconsolidated sediments may have prevented the preservation of voids and fractures that cause a negative gravity anomaly as observed over other impact craters. Additionally, the efficient absorption of impact energy by unconsolidated target material may have inhibited fracture/void development. Although the gravity signature of impact craters formed on land is well known, structures occurring in unconsolidated target material, such as continental shelf environments, constitute another signature that should also be recognized.  相似文献   

18.
We compare three previously independently studied crater morphologies - excess ejecta craters, perched craters, and pedestal craters - each of which has been proposed to form from impacts into an ice-rich surface layer. Our analysis identifies the specific similarities and differences between the crater types; the commonalities provide significant evidence for a genetic relationship among the morphologies. We use new surveys of excess ejecta and perched craters in the southern hemisphere in conjunction with prior studies of all of the morphologies to create a comprehensive overview of their geographic distributions and physical characteristics. From these analyses, we conclude that excess ejecta craters and perched craters are likely to have formed from the same mechanism, with excess ejecta craters appearing fresh while perched craters have experienced post-impact modification and infilling. Impacts that led to these two morphologies overwhelmed the ice-rich layer, penetrating into the underlying martian regolith, resulting in the excavation of rock that formed the blocky ejecta necessary to armor the surface and preserve the ice-rich deposits. Pedestal craters, which tend to be smaller in diameter, have the same average deposit thickness as excess ejecta and perched craters, and form in the same geographic regions. They rarely have ejecta around their crater rims, instead exhibiting a smooth pedestal surface. We interpret this to mean that they form from impacts into the same type of ice-rich paleodeposit, but that they do not penetrate through the icy surface layer, and thus do not generate a blocky ejecta covering. Instead, a process related to the impact event appears to produce a thin, indurated surface lag deposit that serves to preserve the ice-rich material. These results provide a new basis to identify the presence of Amazonian non-polar ice-rich deposits, to map their distribution in space and time, and to assess Amazonian climate history. Specifically, the ages, distribution and physical attributes of the crater types suggest that tens to hundreds of meters of ice-rich material has been episodically emplaced at mid latitudes in both hemispheres throughout the Amazonian due to obliquity-driven climate variations. These deposits likely accumulated more frequently in the northern lowlands, resulting in a larger population of all three crater morphologies in the northern hemisphere.  相似文献   

19.
Abstract– Planetary surfaces are subjected to meteorite bombardment and crater formation. Rocks forming these surfaces are often porous and contain fluids. To understand the role of both parameters on impact cratering, we conducted laboratory experiments with dry and wet sandstone blocks impacted by centimeter‐sized steel spheres. We utilized a 40 m two‐stage light‐gas gun to achieve impact velocities of up to 5.4 km s?1. Cratering efficiency, ejection velocities, and spall volume are enhanced if the pore space of the sandstone is filled with water. In addition, the crater morphologies differ substantially from wet to dry targets, i.e., craters in wet targets are larger, but shallower. We report on the effects of pore water on the excavation flow field and the degree of target damage. We suggest that vaporization of water upon pressure release significantly contributes to the impact process.  相似文献   

20.
Mariner 9 photographs of the southern hemisphere of Mars taken during the 1971 planet-wide dust storm display circular bright spots at a time when all near-surface features were totally obscured. Correlating the positions and diameters of these spots with topography shows that they correspond to craters. About half of all the large craters in thestudy area were brightened. The associated craters are large and flat-floored, have significant rim uplift, and contain dark splotches on their floors. The depth/diameter relationship of the bright spot craters is comparable to that of a planet-wide sample. Depth may not be important in selectively brightening certain craters. The visibility of bright spots in A-camera photographs is strongly dependent on the wavelength of the filter used during exposure. It is proposed that bright spots result from the multiple scattering of incident light in dust clouds entrained within craters during dust storms. The appearance of the dust clouds is a function of the availability of a dust supply and, perhaps, air turbulence generated by winds flowing over upraised rims and rough crater floors. Bright spots persist during the final stage of the planet-wide dust storm. If bright spots are dust clouds, this persistence demonstrates that crater interiors are the last regions of clearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号