首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
This paper describes the design of a star sensor based upon a high dynamic range CCD in order to reach an arcsec-level attitude determination in balloon-borne missions. A custom star identification software was developed and laboratory-tested on a prototype assembled using commercial components. A set of numerical simulations have been carried out to study the dependence on the pointing precision of the centroid position accuracy, the number of detected stars and the effect of the image focusing. Moreover, the role of the electronic noise and the discrete pixel structure on the light signals is identified by the analysis of numerical simulations. Laboratory tests confirm that the arcsec pointing accuracy with a 1 Hz update rate can be achieved with our combination of custom-developed software and selected hardware components.  相似文献   

2.
Simulations of the gravity data to be expected from a Lunar Polar Orbiter spacecraft utilizing either a Doppler velocity tracking system or a gravity gradiometer instrument system are generated using a point mass model that gives an excellent representation of the types of gravity anomalies to be found on the Moon. If the state of the art in instrumentation of both systems remain at the level of ±1 mm/sec at 10 sec integration time for the Doppler velocity system accuracy and at ±1 Eotvos at 10 sec integration time for the gravity gradiometer system accuracy, inspection of the simulations indicates that a gravity gradiometer system will give science data with better resolution and higher amplitude-to-measurement noise ratio than the Doppler velocity system at altitudes below 100 km. The error model used in the study is one where the system errors are assumed to be dominated by the point measurement noise and data quantization noise. The effects of other, more controllable, systematic error sources are not considered in this simplified analysis. For example, both systems will be affected by errors in LPO orbital altitude and position knowledge, spacecraft maneuvers, and data reduction errors. In addition, a Doppler tracking system will be sensitive to errors produced by spacecraft acceleration (from outgassing or solar pressure) and poor relative position of the LPO, Relay Satellite and ground tracking station, while a gravity gradiometer system will be sensitive to errors from spacecraft attitude and angular rates. These preliminary study results now need to be verified by a more complete error analysis in which all the uncertainties of the data gathering process are formally mapped into uncertainties in the resulting gravity maps.  相似文献   

3.
The parametric excitation of a gravity gradient stabilized spacecraft induced by the periodic solar pressure torque is discussed. The solar pressure torque in the linearized equations of motion appears as linear terms with periodic coefficients. The attitude stability is analyzed numerically through the calculation of the Floquet multiplier. The perturbation method is also applied to identify the instability condition analytically. It is made clear that the periodic solar pressure torque can destabilize the coupled roll and yaw attitude motion of the spacecraft. It is also shown that the conditions of parametric resonance are included in the gravity gradient stability condition. Nonlinear simulations are also carried out to verify the effect of the parametric resonance. The numerical simulation using actual parameters shows that the spacecraft inevitably experiences a large amplitude attitude motion due to the periodic solar pressure torque even if the gravity gradient stability condition is satisfied.  相似文献   

4.
The Heliospheric Imager (HI) instruments on the Solar TErrestrial RElations Observatory (STEREO) observe solar plasma as it streams out from the Sun and into the heliosphere. The telescopes point off-limb (from about 4° to 90° elongation) and so the Sun is not in the field of view. Hence, the Sun cannot be used to confirm the instrument pointing. Until now, the pointing of the instruments have been calculated using the nominal preflight instrument offsets from the STEREO spacecraft together with the spacecraft attitude data. This paper develops a new method for deriving the instrument pointing solutions, along with other optical parameters, by comparing the locations of stars identified in each HI image with the known star positions predicted from a star catalogue. The pointing and optical parameters are varied in an autonomous manner to minimise the discrepancy between the predicted and observed positions of the stars. This method is applied to all HI observations from the beginning of the mission to the end of April 2008. For the vast majority of images a good attitude solution has been obtained with a mean-squared deviation between the observed and predicted star positions of one image pixel or less. Updated values have been obtained for the instrument offsets relative to the spacecraft, and for the optical parameters of the HI cameras. With this method the HI images can be considered as “self-calibrating,” with the actual instrument offsets calculated as a byproduct. The updated pointing results and their by-products have been implemented in SolarSoft.  相似文献   

5.
Celestial standards play a major role in observational astrophysics. They are needed to characterise the performance of instruments and are paramount for photometric calibration. During the Herschel Calibration Asteroid Preparatory Programme approximately 50 asteroids have been established as far-IR/sub-mm/mm calibrators for Herschel. The selected asteroids fill the flux gap between the sub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibration stars. All three Herschel instruments observed asteroids for various calibration purposes, including pointing tests, absolute flux calibration, relative spectral response function, observing mode validation, and cross-calibration aspects. Here we present newly established models for the four large and well characterized main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (21) Lutetia which can be considered as new prime flux calibrators. The relevant object-specific properties (size, shape, spin-properties, albedo, thermal properties) are well established. The seasonal (distance to Sun, distance to observer, phase angle, aspect angle) and daily variations (rotation) are included in a new thermophysical model setup for these targets. The thermophysical model predictions agree within 5 % with the available (and independently calibrated) Herschel measurements. The four objects cover the flux regime from just below 1,000 Jy (Ceres at mid-IR N-/Q-band) down to fluxes below 0.1 Jy (Lutetia at the longest wavelengths). Based on the comparison with PACS, SPIRE and HIFI measurements and pre-Herschel experience, the validity of these new prime calibrators ranges from mid-infrared to about 700 μm, connecting nicely the absolute stellar reference system in the mid-IR with the planet-based calibration at sub-mm/mm wavelengths.  相似文献   

6.
Optimal response criteria are developed for the passive attitude control of a composite spacecraft. The physical structure is uniquely different from multi-body systems in that the components are independently and passively stabilized, here the primary body is gravity oriented while the auxiliary body, through geometry selection, is aerodynamically controlled. The Routh-Hurwitz stability criterion is used to obtain the parameter bounds for stability about the preferred dynamic equilibrium position. Further, the least damped mode concept with respect to the roots of the characteristic equation is used to predict conditions for optimum performance. Numerically generated optimal response curves for a satellite in circular orbit show very rapid damping rates for large disturbances up to ten degrees. Under these conditions, and in the absence of external disturbances, course alignment was reached within several orbits and fine pointing accuracy attainable up to altitudes of 650 kilometers.  相似文献   

7.
针对太赫兹波段天文点源目标较少, 指向测量相对困难的特点, 研究了利用与太赫兹天线共轴的小型光学望远镜来辅助太赫兹望远镜指向测量以及建立指向误差修正模型的方法. 依托紫金山天文台1.2 m斜轴式太赫兹天线开展了光学辅助指向测量的实验研究, 利用一台安装在天线背架上的100mm口径折射式光学望远镜获得了优于2$''$的指向测量精度. 此外, 通过对斜轴天线的结构分析以及大气折射和本地恒星时(Local Sidereal Time, LST)偏差等误差来源的分析, 建立了包含23个误差项的斜轴式光学指向修正模型, 实现了约3$''$的拟合精度. 最后, 借助高精度数字摄影测量对光电轴一致性进行了标定, 并针对其对指向模型精度的影响进行了讨论. 研究成果将为南极5 m太赫兹望远镜(The 5m Dome A Terahertz Explorer, DATE5)及其他太赫兹望远镜提供指向测量和指向修正模型方面的技术参考.  相似文献   

8.
先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)卫星姿控分系统的主要任务是实现高精度、高稳定度对日指向控制. ASO-S卫星的科学载荷中,白光望远镜(White-light Solar Telescope, WST)前端配置了太阳导行镜(Guide Telescope, GT)稳像系统,利用正交分布光电二极管组成的边缘探测器测量导行镜光轴与太阳中心的偏差角.提出了一种将GT测量值引入姿态控制闭环的控制方法:利用星敏陀螺定姿算法获得卫星-太阳方向姿态偏差, GT测量值确定非卫星-太阳方向姿态偏差;以4斜装反作用轮组为执行机构,进行三轴零动量稳定姿态控制.通过数学仿真验证,基于GT测量值的姿态控制器在非卫星-太阳方向的绝对指向精度优于2′′、相对姿态稳定度优于1′′/60 s,满足ASO-S卫星高精度高稳定度的对日指向要求.  相似文献   

9.
描述了采用光学望远镜辅助天马13m射电望远镜进行指向测量以及建立指向误差修正模型的方法. 对于小口径望远镜, 指向校准目标源比较少, 用射电法建立指向模型难以覆盖全天区. 利用上海天文台天马13m射 电望远镜进行光学望远镜辅助射电望远镜指向测量研究, 在13m天线背架上安装一套光学指向系统, 获得了优 于3''的重复测量误差. 此外, 通过对影响天线指向因素的分析, 建立了包含8个误差项的指向误差修正模型以及 光轴和电轴偏差模型. 将指向模型代入天线伺服控制系统, 对校准目标射电源进行十字扫描, 得到指向样本残差约 为5''. 该研究可以为实现高精度指向建模提供一种参考方法.  相似文献   

10.
For more than 40 years CNES has flown scientific balloon flights to perform measurements in a near space environment. The CNES balloon team provides the scientific teams with expertise in the construction of the gondola, the link between the instrument and the balloon. This gondola provides to the scientific instrument power supply, thermal and landing protection, attitude measurement and also pointing capability where needed.The project CLAIRE provides a good illustration of the CNES expertise in this domain. The goal of this project was to demonstrate that it is possible to focus a gamma-ray beam intercepted by a large area onto a small focal point. The concept has been demonstrated on ground in the 90s, but a validation under space conditions was necessary to measure the performance of such a telescope for a source at infinity.  相似文献   

11.
关于脉冲星脉冲到达时间转换方程   总被引:1,自引:0,他引:1  
较详细地介绍了脉冲星脉冲到达时间(TOA)转换方程,讨论了脉冲星TOA转换方程在航天器导航算法中的具体应用问题。同时,对导航用的脉冲星脉冲TOA转换方程与地面射电计时观测用的脉冲星脉冲TOA转换方程进行了比较研究。  相似文献   

12.
13.
This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the ???10?MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7?keV observed during solar flares with an angular resolution as fine as 0.1 arcsec ?C over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of ???10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of ???100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane ???100 m away. High-resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.  相似文献   

14.
Precise pointing and stabilization of the T-170M telescope (World Space Observatory Ultraviolet, WSO-UV project) is provided by the Fine Guidance System (FGS) that uses a guide star catalogue (Master Catalogue). To verify the photometric system of the Master Catalogue we have carried out ground based observations with a CCD-camera in a spectral band, close to that of FGS. We have found, that the photometric quality of the Master Catalogue is sufficient for FGS operations. The mean photometric error in the range of 14–17 mag is ±0.23 mag; its variation over the sky does not exceed the factor of two. 2% of stars from the Master Catalogue have photometric errors higher than 2 mag. We have also found a correlation between large photometric errors and the Master Catalogue flags.  相似文献   

15.
We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.  相似文献   

16.
We present the results of a mesospheric sodium monitoring programme at La Palma carried out through five campaigns of one week each, from 1999 September to 2000 August. The yearly averaged parameters of the layer (the sodium column density and the width) are given. We show that the short time-scale dynamics of the layer are governed by the sporadic layers with an average frequency of one event per night. The influence of the short time-scale dynamics of the layer on an adaptive optics system working on the William Herschel Telescope is quantified. It appears that it is a small effect in terms of defocus error. Finally, we present data obtained during the Perseid meteor shower and show that the dynamics of the sodium layer undergoes a transition with the meteoric activity.  相似文献   

17.
A subreflector adjustment system for the Tianma 65 m radio telescope, administered by Shanghai Astronomical Observatory, has been installed to compensate for gravitational deformation of the main reflector and the structure supporting the subreflector. The position and attitude of the subreflector are variable in order to improve the efficiency at different elevations. The subreflector model has the goal of improving the antenna's performance. A new fitting formulation which is different from the traditional formulation is proposed to reduce the fitting error in the Y direction. The only difference in the subreflector models of the 65 m radio telescope is the bias of a constant term in the Z direction. We have investigated the effect of movements of the subreflector on the pointing of the antenna. The results of these performance measurements made by moving the antenna in elevation show that the subreflector model can effectively improve the efficiency of the 65 m radio telescope at each elevation. An antenna efficiency of about 60% at the K u band is reached in the whole angular range of elevation.  相似文献   

18.
The visible airglow photometer on the Atmosphere Explorer C Satellite has been used to compare the calibrations of a number of ground-based airglow observatories. Discrepancies between different ground stations as large as a factor of six have been revealed. Efforts to account for these discrepancies have resulted in the discovery of differences as large as a factor of 2 in the standard light sources in use at different observatories. The participation of additional observatories in the intercomparison of standard sources is solicited. The project has also led to the discovery of a source of error that can amount to another factor of 2 in the procedure used to calibrate many airglow instruments. In the course of the project detailed maps, based on satellite data, have been made of the galactic and zodiacal light background at a number of wavelengths, and a substantial source of contaminating emission has been discovered in the satellite data; the contamination appears to result from interaction of the spacecraft and the atmosphere at altitudes below 170 km.  相似文献   

19.
The Hinode Solar Optical Telescope (SOT) is the first space-borne visible-light telescope that enables us to observe magnetic-field dynamics in the solar lower atmosphere with 0.2 – 0.3 arcsec spatial resolution under extremely stable (seeing-free) conditions. To achieve precise measurements of the polarization with diffraction-limited images, stable pointing of the telescope (<0.09 arcsec, 3σ) is required for solar images exposed on the focal plane CCD detectors. SOT has an image stabilization system that uses image displacements calculated from correlation tracking of solar granules to control a piezo-driven tip-tilt mirror. The system minimizes the motions of images for frequencies lower than 14 Hz while the satellite and telescope structural design damps microvibration in higher frequency ranges. It has been confirmed from the data taken on orbit that the remaining jitter is less than 0.03 arcsec (3σ) on the Sun. This excellent performance makes a major contribution to successful precise polarimetric measurements with 0.2 – 0.3 arcsec resolution. K. Kobayashi now at NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA.  相似文献   

20.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号