首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Orion Nebula cluster (ONC) appears to be unusual on two grounds: the observed constellation of the OB stars of the entire ONC and its Trapezium at its centre implies a time-scale problem given the age of the Trapezium, and an initial mass function (IMF) problem for the whole OB star population in the ONC. Given the estimated crossing time of the Trapezium, it ought to have totally dynamically decayed by now. Furthermore, by combining the lower limit of the ONC mass with a standard IMF it emerges that the ONC should have formed at least about 40 stars heavier than  5 M  while only 10 are observed. Using the N -body experiments we (i) confirm the expected instability of the Trapezium and (ii) show that beginning with a compact OB-star configuration of about 40 stars both the number of observed OB stars after 1 Myr within 1 pc radius and a compact trapezium configuration can be reproduced. These two empirical constraints thus support our estimate of 40 initial OB stars in the cluster. Interestingly, a more-evolved version of the ONC resembles the Upper Scorpius OB association. The N -body experiments are performed with the new C-code catena by integrating the equations of motion using the chain-multiple-regularization method. In addition, we present a new numerical formulation of the IMF.  相似文献   

2.
The analysis of the kinematics of solar neighbourhood stars shows that the low- and high-metallicity tails of the thin disc are populated by objects which orbital properties suggest an origin in the outer and inner Galactic disc, respectively. Signatures of radial migration are identified in various recent samples, and are shown to be responsible for the high-metallicity dispersion in the age–metallicity distribution. Most importantly, it is shown that the population of low-metallicity wanderers of the thin disc (−0.7 < [Fe/H] < −0.3 dex) is also responsible for the apparent hiatus in metallicity with the thick disc (which terminal metallicity is about −0.2 dex). It implies that the thin disc at the solar circle has started to form stars at about this same metallicity. This is also consistent with the fact that 'transition' objects, which have α-element abundance intermediate between that of the thick and thin discs, are found in the range [−0.4, −0.2] dex. Once the metal-poor thin disc stars are recognized for what they are – wanderers from the outer thin disc – the parenthood between the two discs can be identified on stars genuinely formed at the solar circle through an evolutionary sequence in [α/Fe] and [Fe/H]. Another consequence is that stars that can be considered as truly resulting of the chemical evolution at the solar circle have a metallicity restricted to about [−0.2, +0.2] dex, confirming an old idea that most chemical evolution in the Milky Way have preceded the thin disc formation.  相似文献   

3.
4.
As stars close to the galactic centre have short orbital periods it has been possible to trace large fractions of their orbits in the recent years. Previously the data of the orbit of the star S2 have been fitted with Keplerian orbits corresponding to a massive black hole (MBH) with a mass of MBH = 3–4 × 106M implying an insignificant cusp mass. However, it has also been shown that the central black hole resides in a ∼1″ diameter stellar cluster of a priori unknown mass. In a spherical potential which is neither Keplerian nor harmonic, orbits will precess resulting in inclined rosetta shaped trajectories on the sky. In this case, the assumption of non‐Keplerian orbits is a more physical approach. It is also the only approach through which cusp mass information can be obtained via stellar dynamics of the cusp members. This paper presents the first exemplary modelling efforts in this direction. Using positional and radial data of star S2, we find that there could exist an unobserved extended mass component of several 105M forming a so‐called ‘cusp’ centered on the black hole position. Considering only the fraction of the cusp mass Mequation/tex2gif-inf-4.gif within the apo‐center of the S2 orbit we find as an upper limit that Mequation/tex2gif-inf-6.gif/(MBH + Mequation/tex2gif-inf-9.gif) ≤ 0.05. A large extended cusp mass, if present, is unlikely to be composed of sub‐solar mass constituents, but could be explained rather well by a cluster of high M/L stellar remnants, which we find to form a stable configuration. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The abundances of long-lived radioactive elements Th and U observed in metal-poor halo stars can be used as chronometers to determine the age of individual stars, and hence set a lower limit on the age of the Galaxy and hence of the universe. This radioactive dating requires the zero-decay productions of Th and U, which involves complicated r-process nucleosynthesis calculations. Several parametric r-process models have been used to calculate the initial abundance ratios of Th/Eu and U/Th, but, due to the sharp sensitivity of these models to nuclear physics inputs, the calculations have relatively large uncertainties which lead to large uncertainties in the age determinations. In order to reduce these uncertainties, we present a simple method to estimate the initial productions of Th and U, which only depends on the solar system abundances and the stellar abundances of stable r-process elements. From our calculations of the initial abundance ratios of Th/Eu and U/Th, we re-estimate the ages of those ver  相似文献   

6.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

7.
We interpret the de‐reddened UBV data for the field SA 133 to deduce the stellar density and metallicity distribution functions. The logarithmic local space density for giants, D*(0) = 6.40, and the agreement of the luminosity function for dwarfs and sub‐giants with the one of Hipparcos confirms the empirical method used for their separation. The metallicity distribution for dwarfs gives a narrow peak at [Fe/H] = +0.13 dex, due to apparently bright limiting magnitude, Vo = 16.5, whereas late‐type giants extending up to z ∼ 4.5 kpc from the galactic plane have a multimodal distribution. The metallicity distribution for giants gives a steep gradient d[Fe/H]/dz = –0.75 dex kpc–1 for thin disk and thick disk whereas a smaller value for the halo, i.e. d[Fe/H]/dz = –0.45 dex kpc–1. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We study the kinematics of the Galactic thin and thick disk populations using stars from the RAVE survey’s second data release together with distance estimates from Breddels et al. (2010). The velocity distribution exhibits the expected moving groups present in the solar neighborhood. We separate thick and thin disk stars by applying the X (stellar-population) criterion of Schuster et al. (1993), which takes into account both kinematic and metallicity information. For 1906 thin disk and 110 thick disk stars classified in this way, we find a vertical velocity dispersion, mean rotational velocity and mean orbital eccentricity of (σW, 〈VΦ〉, 〈e〉)thin = (18 ± 0.3 km s−1, 223 ± 0.4 km s−1, 0.07 ± 0.07) and (σW, 〈VΦ〉, 〈e〉)thick = (35 ± 2 km s−1, 163 ± 3 km s−1, 0.31 ± 0.16), respectively. From the radial Jeans equation, we derive a thick disk scale length in the range 1.5-2.2 kpc, whose greatest uncertainty lies in the adopted form of the underlying potential. The shape of the orbital eccentricity distribution indicates that the thick disk stars in our sample most likely formed in situ with minor gas-rich mergers and/or radial migration being the most likely cause for their orbits. We further obtain mean metal abundances of 〈[M/H]〉thin = +0.03 ± 0.17, and 〈[M/H]〉thick = −0.51 ± 0.23, in good agreement with previous estimates. We estimate a radial metallicity gradient in the thin disk of −0.07 dex kpc−1, which is larger than predicted by chemical evolution models where the disk grows inside-out from infalling gas. It is, however, consistent with models where significant migration of stars shapes the chemical signature of the disk, implying that radial migration might play at least part of a role in the thick disk’s formation.  相似文献   

9.
Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = ?26.0 ± 0.3 km s?1 kpc?1, ω0 = 4.18 ± 0.17 km s?1 kpc?2, ω0 = ?0.45 ± 0.06 km s?1 kpc?3, the system contraction parameter K = ?2.4 ± 0.1 km s?1 kpc?1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = ?4.3 ± 1.0 km s?1.  相似文献   

10.
Analysis of 18 observations of the limb intensity profile of the CO Cameron bands in the Martian airglow shows that the equivalent subsolar zenith intensity, ICAM, is related to the Ottawa 10.7 cm radio flux index, F10.7, by the expression ICAM = 0.062(74 + F10.7)kR, with a correlation coefficient of 0.80. Comparison of averaged limb intensities of the CO2+ doublet and the Cameron bands on four favorable occasions is consistent with the intensities being directly proportional, in the ratio 0.24:1. The mean of 18 Cameron band topside scale heights is 17.8 km, corresponding to an exospheric temperature of 325°K, and the largest and smallest values observed differ by 9.5 km. These observations are in accord with theoretical predictions within the uncertainties in the latter. However, the solar EUV flux used in these predictions is a factor of at least two too weak to produce the electron densities measured by the S-band occultation experiment.  相似文献   

11.
ART-P/Granat observations of the X-ray burster SLX 1732-304 in the globular cluster Terzan 1 are presented. The X-ray (3–20 keV) fluxes from the source differed by more than a factor of 4 during the observing sessions on September 8 (F x ? 6.95 × 10?10 erg cm?2 s?1) and October 6, 1990 (F x ? 1.64 × 10?10 erg cm?2 s?1). The intensity variations of SLX 1732-304 were apparently accompanied by variations in its hardness: whereas the source in its high state had the spectrum with a distinct exponential cutoff typical of bright low-mass X-ray binaries, its low-state spectrum could be satisfactorily described by a simple power law with a photon index α?1.7. During the ART-P observation on September 8, a type I X-ray burst was detected from SLX 1732-304.  相似文献   

12.
We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass  (4–7 M)  asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while 'normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.  相似文献   

13.
We have redetermined the kinematic parameters of the Gould Belt using currently available data on the motion of nearby young (log t < 7.91) open clusters, OB associations, and moving stellar groups. Our modeling shows that the residual velocities reach their maximum values of ?4 km s?1 for rotation (in the direction of Galactic rotation) and +4 km s?1 for expansion at a distance from the kinematic center of ≈300 pc. We have taken the following parameters of the Gould Belt center: R 0 = 150 pc and l 0 = 128°. The whole structure is shown to move relative to the local standard of rest at a velocity of 10.7 ± 0.7 km s?1 in the direction l = 274° ± 4° and b = ?1° ± 3°. Using the derived rotation velocity, we have estimated the virial mass of the Gould Belt to be 1.5 × 106 M .  相似文献   

14.
We have examined 426Voyager fields distributed across the sky for O VI (γγ 1032/1038 å) emission from the Galactic diffuse interstellar medium. No such emission was detected in any of our observed fields. Our most constraining limit was a 90% confidence upper limit of 2600 photons cm?2 sr?1 s?1 on the doublet emission in the direction (l, b) = (117.3, 50.6). Combining this with an absorption line measurement in nearly the same direction allows us to place an upper limit of 0.01 cm?3 on the electron density of the hot gas in this direction. We have placed 90% confidence upper limits of less than or equal to 10,000 photons cm?2 sr?1 s?1 on the O VI emission in 16 of our 426 observations.  相似文献   

15.
We obtained constraints on the luminosity of the central source in SNR 1987 A using XMM-Newton and INTEGRAL data. XMM-Newton yields an upper limit on the SNR luminosity in the 2–10 keV energy band, LX ? 5 × 1034 erg s?1. Since the optical depth of the envelope is still large in the XMM-Newton energy band, this constraint carries no useful information about the luminosity of the central source. The optical depth is expected to be small in the hard (20–200 keV) X-ray band of the IBIS telescope aboard the INTEGRAL observatory. We detected no statistically significant emission from SNR 1987 A in the INTEGRAL data and obtained an upper limit of LX ? 1.1 × 1036 erg s?1 on the luminosity of the central source in the 20–60 keV band. We also obtained an upper limit on the mass of radioactive 44Ti, M(44Ti) ? 10?3M.  相似文献   

16.
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s–1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246±7 km s–1, for Solar motions of V = 12.23 and 5.25 km s–1, respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) survey (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The ground-level zenith radiance of the atmospheric emission at λ1.27 μm was radiometrically observed to increase by a factor of approximately two with the onset of an IBC III+ auroral breakup above Chatanika, Alaska, on 10 March 1975. Time-resolved optical spectra clearly show that the slow component of the enhancement is associated with the (0,0) band of the infrared atmospheric system of O2. Photometric and incoherent scatter radar data are used to define the energy-deposition profile and the absolute energy flux for the event. The magnitude of the O2λ1.27-μm enhancement compares favourably with the predictions of an auroral excitation model which includes only secondary-electron excitation of molecular oxygen in the O2(a1Δg) source term.  相似文献   

18.
Variability on time scales δt < t is observed on numerous occasions in the afterglows of cosmic gamma-ray bursts (GRBs). It is well known that the radiation originating in an external shock produced by the interaction of an ultrarelativistic jet with the ambient interstellar medium should not contain such variability within the framework of simple models. The corresponding constraints were established by Ioka et al. (2005) and, in some instances, are inconsistent with observations. On the other hand, if the motion is not relativistic, then the rapid afterglow variability can be explained much more easily. Various estimates of the transition time to a nonrelativistic motion in a GRB source are discussed in this connection. It has been shown that this transition should occur on an observed time scale of ~10 days. In the case of a higher density of the surrounding material, ~102?104 cm?3, or a stellar wind with ? ~ 10?5?10?4 M yr?1, the transition to a nonrelativistic motion can occur on a time scale of ~1 day. Such densities may well be expected in star-forming regions and around massive Wolf-Rayet stars.  相似文献   

19.
While data on the cosmogenic isotopes 14C and 10Be made it possible to evaluate extreme solar proton events (SPEs) in the past, their relation to standard parameters quantifying the SPE strengths, viz. the integrated fluence of protons with energy above 30 MeV, F 30, is ambiguous and strongly depends on the assumed shape of the energy spectrum. Here we propose a new index, the integral fluence of an SPE above 200 MeV, F 200, which is related to the production of the cosmogenic isotopes 14C and 10Be in the Earth atmosphere, independently of the assumptions on the energy spectrum of the event. The F 200 fluence is reconstructed from past cosmogenic isotope data, which provides an assessment of the occurrence probability density function for extreme SPEs. In particular, we evaluate that extreme SPEs with F 200>1010 cm?2 occur no more frequently than once per 10?–?15 kyr.  相似文献   

20.
A set of samples of 13 massive star-forming cores were observed in SiO (2-1), CH3OH (2-1) and C34S (2-1) thermal lines. Nine of these cores were detected in all three lines. Among the nine SiO detections, three were new detections, and relatively faint. Most of the lines have wide wings, which might be interpreted as the evidence of ongoing energetic out?ows in the cores. The line widths of SiO are generally the broadest, which might further suggest that the SiO emissions are due to higher velocity out?ow, and closer to the excited source. We derive the rotational temperatures, column densities and chemical relative abundances of the cores. There is a strong correlation between SiO and CH3OH abundances, with correlation coeffcient R = 0.77, but no correlation is observed between SiO and C34S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号