首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙燕  徐烨  杨戟 《天文学报》2012,53(2):97-105
对13个大质量恒星形成区样本进行了SiO(2-1)、CH_3OH(2-1)和C~(34)S(2-1)热线的观测.在9个分子云核中,3条热线同时被探测到.这9个SiO探测中,有3个是新探测到的且它们强度都相对较弱.所有探测到的谱线都有较明显的线翼,这可能是外向流出现的证据.SiO谱线的线宽最宽,这也更进一步表明SiO辐射可能是来自高速的外向流,即更靠近外向流的激发源.估算了各分子谱线的旋转温度,柱密度和相对元素丰度.结果表明SiO和CH_3OH元素丰度之间有较好的相关性,相关系数R=0.77,但是SiO和C~(34)S元素丰度之间却没有任何相关性.  相似文献   

2.
With the 13.7 m millimeter wave telescope of Purple Mountain Observatory at Qinghai Station, the simultaneous mapping observations at the 12CO(J=1-0), 13CO(J=1-0) and C18O(J=1-0) lines were performed towards the 24 Galactic high-mass star-forming cores, which are associated with water masers and have available Spitzer's infrared data. The average mapping range was 8′ × 8′. The C18O line emission was detected in all the cores, in which 11 cores were observed to the half maximum of their C18O integrated intensities and the rather extended (5′ − 8′) C18O maps were obtained, while the others were failed to make such a large scale mapping because of the low SNR or the intrinsically extended morphology of the cores. On the 11 completely mapped dense cores, we analyzed their characteristics and made the statistics and comparisons on the integrated intensity ratios between 12CO and 13CO (R12/13), 13CO and C18O(R13/18), as well as 12CO and C18O(R12/18). We concluded that as a tracer of dense gas, C18O is absolutely optically thin and can be used to detect the detailed structures of the cores, and that in general the 3 ratios increase gradually from the core center to the periphery. We found that the integrated intensity ratio R12/13 ranges from 2 to 6; R13/18 fluctuates between 4 and 20, but in central regions it is concentrated in the range 6–12 with a small fluctuation; and R12/18 occupies a wider range 13–90, but it is concentrated between 13 and 50 in the denser regions of the cores.  相似文献   

3.
By using the 13.7 m millimeter wave telescope of the Qinghai Station of Purple Mountain Observatory at Delingha, we have performed the mapping observations simultaneously at the (J = 1-0) lines of 12CO, 13CO and C18O towards respectively the 17 star forming regions associated with clusters. All of them show rather strong C18O emission, except IRAS 04547+4753. Because of the different sizes of molecular clouds, there are 13 regions being observed to the half maximum of 13CO integrated intensity, and the large-area mapping observation has not been made for the other 4 regions with rather large extents. Based on the observed data, the physical properties of molecular cores are calculated, such as the line width, brightness temperature, size, density and mass. The averaged ratios of the virial mass Mvir and local thermodynamic equilibrium mass MLTE of the 13CO and C18O cores are 0.66 and 0.74, respectively, suggesting that these cores are nearly at the virial equilibrium state. In order to compare the cores and clusters in morphologies, the contour maps of the integrated intensities of 13CO and C18O are overlaid on the K-band images of 2MASS. At the same time, the sizes and masses of the clusters associated with cores are calculated by adopting the photometric results of the near-infrared point sources in 2MASS database. Based on the derived masses of the molecular cores and clusters, the star formation efficiency (SFE) is calculated for the molecular clouds, and we find that it varies in the range from 10% to 30%.  相似文献   

4.
The effects of the production on dust grain surfaces of molecular hydrogen in excited states have been investigated. On the assumption that all of the H2 formed on the surface of grains has a sufficient level of excitation too vercome the energy barriers in the formation reactions for the important OH and CH+ radicals, we consider the likely abundances of excited H2 (H2 *), OH and CH+ in various situations. Two different models are employed; the first links the H2 * abundance directly to that of H2 using a steady-state approximation, whilst the second considers the time-dependence of H2 *. The second model is applied to gas that has been subjected to a strong isothermal shock (specifically, the shock-induced collapse of a diffuse cloud), which results in an extreme (high density, high atomic hydrogen abundance) environment. In general, it is found that the presence of the excited H2 has only marginal effects on the chemistry of interstellar clouds. However, in the isothermal shock model, the abundances of CH+ are significantly enhanced, but only on short timescales, whilst the effects on the OH abundances are smaller, but last longer. We conclude that other than in such exceptional environments there are no obvious chemical signatures of the formation of H2 *. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We report mapping observations of a 35 pc × 35 pc region covering the Sgr B2 molecular cloud complex in the 13CO (3-2) and the CS (7-6) lines using the ASTE 10 m telescope with high angular resolution. The central region was mapped also in the C18O (3-2) line. The images not only reproduce the characteristic structures noted in the preceding millimeter observations, but also highlight the interface of the molecular clouds with a large velocity jump of a few tens of km s−1. These new results further support the scenario that a cloud–cloud collision has triggered the formation of massive cloud cores, which form massive stars of Sgr B2. Prospects of exciting science enabled by ALMA are discussed in relation to these observations.  相似文献   

6.
By the mapping observations simultaneously at the 12CO (J=1-0), 13CO (J=1-0), and C18O (J=1-0) lines on the area of 24’×24’ (12 pc×12 pc) of the star forming region AFGL 5157, we have obtained the distribution and averaged physical parameters for the respective 13CO and C18O cores of this molecu- lar cloud. At the edge of the molecular cloud, the isotopic abundance ratio is X [(13CO)/(C18O)] 10, close to the ratio of a giant molecular cloud. The viral masses of the 13CO and C18O cores are less than the masses of the molecu-lar cloud cores, so the molecular cloud cores are gravitationally unstable, and the C18O molecular cloud core is more easy to collapse. The column density distributions of the C18O molecular cloud core in the northeast and southwest directions are, respectively, 1.1 × 1023× z−0.43 and 4.6 × 1025× z−0.58, where z is the distance from the center of the molecular cloud core. The high velocity molecular out?ow has been con?rmed from our 12CO spectra, the mass loss rate of the out?ow has been estimated, and the mass-velocity relation of the out?ow is ?tted by a power-law function of mv−1.8. The star formation rate of the 13CO molecular cloud core is as high as 23%, probably, under the in?uence of  相似文献   

7.
We searched for the CSJ = 2 – 1 emission towards 29 southern H2O and H2O/OH masers and 1 OH maser with the SEST radio telescope. We detected and mapped 24 CS emitting regions probably associated with 27 H2O masers. The C34SJ = 2 – 1 and COJ = 1 – 0 lines were also observed at the grid positions closest to the CS peaks. Four cores were mapped in the CSJ = 5 – 4 and C34SJ = 2 – 1 lines.  相似文献   

8.
We have constructed models for a region of low mass star formation where stellar winds ablate material from dark dense cores and return it to a translucent intercore medium from which subsequent generations of cores condense. Depletion of gas phase species onto grains plays a major role in the chemistry. For reasonable agreement between model core chemical fractional abundances and measured TMC-1 fractional abundances to obtain, the core collapse, once started, must be relatively uninhibited by turbulence or magnetic fields and the core lifetime must fall in a limited range determined by the assumed depletion rates. In a core with the TMC-1 fractional abundances, CH, OH, C2H, H2CO, HCN, HNC, and CN are the only simple species that have been detected in TMC-1 at radio and millimeter wavelengths to have fractional abundances that are roughly constant or increasing with time; this result bears considerably on previous work concerned with searches for spectroscopic evidence for and the diagnosis of collapse during protostellar formation, but depends on the fractions of the OH and CH emissions that are associated with the core centre rather than more extended gas or a core-stellar wind boundary layer. Model results for the abundance ratios of H2O, CH4, and NH3 ices are in good agreement with those inferred for Halley's Comet.  相似文献   

9.
A multitransition 3-mm molecular line single pointing and mapping survey was carried out towards 29 massive star-forming cores in order to search for the signature of inward motions. Up to seven different transitions, optically thick lines HCO+(1-0), CS(2-1), HNC(1-0), HCN(1-0) and 12CO(1-0), and optically thin lines C18O(1-0) and 13CO(1-0) were observed towards each source. The normalized velocity differences (     ) between the peak velocities of optically thick lines and optically thin line C18O(1-0) for each source were derived. Prominent inward motions are probably present in either HCO+(1-0) or CS(2-1) or HNC(1-0) observations in most sources. Our observations show that there is a significant difference in the incidence of blueshifted asymmetric line profiles between CS(2-1) and HCO+(1-0). The HCO+(1-0) shows the highest occurrence of obvious asymmetric features, perhaps owing to different optical depth between CS(2-1) and HCO+(1-0). HCO+(1-0) appears to be the best inward motion tracer. The mapping observations of multiple line transitions enable us to identify six strong infall candidates: G123.07-6.31, W75(OH), S235N, CEP-A, W3(OH) and NGC 7538. The infall signature is extended up to a linear scale  >0.2 pc  .  相似文献   

10.
We present a mini-survey of ultrahigh-resolution spectroscopy (UHRS) of CH towards three southern molecular cloud envelopes. The sightlines are selected to probe physically similar gas in different Galactic environments. With a velocity resolution of ∼0.5 km s−1  ( R =575 000)  these observations resolve most kinematic components of the absorption lines. We do, however, detect one line component in the Lupus region, which is not resolved and for which an upper limit of   b <0.3 km s-1  is found. We find a correlation between distance of the absorbing gas from the Galactic mid-plane and the fractional abundance of CH. We show that this correlation can be explained as being a result of a fall-off in the ultraviolet radiation field intensity and propose that CH observations in carefully selected sightlines might allow a mapping of the variations in the interstellar radiation field.  相似文献   

11.
In this paper we study the effect of shock waves on the chemical structure of the interstellar clouds. A model of molecular cloud has been assumed. The chemistry is investigated in a time dependent model. Our chemical network contains 56 species in 251 reactions to including molecules of the elements H, O, C, N, S, and Si.The results indicate that the calculated fractional abundance of the molecules NS, H2O, CN, NH, CO, and SO agrees well with the observations. The molecules OH, H2S, CS, H2CS, HS, NO, SiO, CH, CH2, CH3, HCO, C2, and HCN reach high post-shock abundances.  相似文献   

12.
13.
One-dimensional radial models of the chemistry in cometary comae have been constructed for heliocentric distances ranging from 2 to 0.125 AU. The coma's opacity to solar radiation is included and photolytic reaction rates are calculated. A parent volatile mixture similar to that found in interstellar molecular clouds is assumed. Profiles through the coma of number density and column density are presented for H2O, OH, O, CN, C2, C3, CH, and NH2. Whole-coma abundances are presented for NH2, CH, C2, C3, CN, OH, CO+, H2O+, CH+, N2+, and CO2+.  相似文献   

14.
SiS has been conclusively detected toward Orion-KL via its J = 6-5 and J = 5-4 rotational transitions at 91 and 109 GHz. Line profiles indicate that the species is present at an LSR velocity of 7.5 km s-1 with a half-width at zero power of 36 km s-1. Such characteristics associate SiS with the moderate velocity outflow (V approximately 18 km s-1) centered on IRc2 and observed in thermal SiO, the NH3 "plateau," and OH, H2O, and SiO masers. The column density estimated for SiS in this region is Ntot = 4 x 10(15) cm-2, corresponding to a fractional abundance of f approximately 4 x 10(-9). Such an abundance implies an SiO/SiS ratio of approximately 60 in the outflow material, remarkably close to the cosmic O/S ratio of approximately 40 and contrasting with the SiO/SiS value of > approximately 10(3) predicted by ion-molecule models. This difference is probably a result of the high temperatures and densities present in the outflow, which favor thermal equilibrium abundances similar to those observed in the circumstellar shells of late-type stars rather than "ion-molecule"-type concentrations. In addition to SiS, some twenty new unidentified lines near 91 and 109 GHz were detected toward KL, as well as transitions arising from HC5N, HC13CCN, HCC13CN, O13CS, and, possibly, CH3CH2OH, CH3CHO, and CH3OD.  相似文献   

15.
16.
A critical analysis of CH, NH, OH, C2, and CN molecules/radicals has been made in twenty-four F- and early G-type dwarfs at different effective temperature as well as in new constructed model atmosphere. Molecular indices of bandheads ofA-X system of CH, NH, OH, C2, and CN have been obtained by using the data available in the literature (thirteen-colour and eight-colour photometry).Besides, some interesting plots of the molecular indices vs eff, molecular abundances and molecular indices vs dissociation energy, reduced equivalent widths and FCF's vs dissociation energy for respective molecules have also been enumerated. It is found that the molecular indices at bandheads ofA-X system of CH, NH, OH, C2, and CN are approximately constant (5810–6570 K). It is to be noted that the molecular indices decrease in the order OH, NH, CH, C2, and CN at a given temperature.The dissociation equilibrium of CH, NH, OH, C2, and CN is considered at 5810, 6570, and 7160 K phases in model atmosphere. At standard scale of abundance the molecular abundance and molecular index decrease in the order OH, NH, CH, C2, and CN at any given phase, however, CN abundance and index increase (eff=0.867-0.767). The amplitude of abundance and index variation decrease in the order NH, OH, CH, C2, and CN (eff=0.767-0.704).The reduced equivalent width decrease in the order OH, NH, CH, and C2 and FCF's decrease in the order CH, OH, NH, CN, and C2.The confrontation of models and observations of spectra of F- and early G-type dwarfs of parent molecules is of primary importance to investigate the physical conditions within atmospheres. Reliable excitation models are also requisite for interpreting spectroscopic observations of parent molecules and deriving molecular abundances.  相似文献   

17.
Nearby interstellar clouds with high (|ν|≥10km s−1) random velocities although easily detected in NaI and CaII lines have hitherto not been detected (in emission or absorption) in the HI 21cm line. We describe here deep Giant Metrewave Radio Telescope (GMRT) HI absorption observations toward radio sources with small angular separation from bright O and B stars whose spectra reveal the presence of intervening high random velocity CaII absorbing clouds. In 5 out of the 14 directions searched we detect HI 21cm absorption features from these clouds. The mean optical depth of these detections is ∼0.09 and FWHM is ∼10km s−1, consistent with absorption arising from CNM clouds.  相似文献   

18.
Towards the high-latitude cloud MBM 40, we identify 3 dense molecular cores of M0.2–0.5 M, and sizes of 0.2 pc in diameter embedded in the H I cloud of 8 M which is observed to be extended along the northeast–southwest direction. The molecular cloud is located almost perpendicularly to the H I emission. We confirm the previous result of Magnani et al. that MBM 40 is not a site for new star formations. We found a very poor correlation between the H I and the IRAS 100 μm emissions, but the CO (1–0) and 100 μm emissions show a better correlation of WCO/I100=1±0.2 K km s−1 (MJy sr−1)−1. This ratio is larger by a factor of ≥5 than in dense dark clouds, which may indicate that the CO is less depleted in MBM 40 than in dense dark clouds.  相似文献   

19.
This paper reports 13CO, C18O, HCO+ (J = 1−0) spectral observations toward IRAS 23133+6050 with the 13.7 m millimeter-wave telescope at Qinghai Station of PMO. Corresponding to the 13CO, C18O, HCO+ line emissions, the size of the observed molecular cloud core is 4.0 pc, 2.1 pc and 2.3 pc, the virial mass is 2.7 × 103 M, 0.9 × 103 M and 2.3 × 103 M, and the volume density of H2 is 2.7 × 103 cm−3, 5.1 × 103 cm−3 and 4.6 × 103 cm−3, respectively. Using the power-law function n(r) ∼rp, the spatial density distribution of the cloud core was analyzed, the obtained exponent p is respectively 1.75, 1.56 and 1.48 for the 13CO, C18O and HCO+ cores, and it is found that the density distribution becomes gradually flatter from the outer region to the inner region of the core. The HCO+ abundance is 4.6 × 10−10, one order of magnitude less than the value for dark clouds, and slightly less than that for giant molecular clouds. The 13CO/C18O relative abundance ratio is 12.2, comparable with the value 11.8 for dark clouds, and the value 9.0 ∼ 15.6 for giant molecular clouds. A 13CO bipolar outflow is found in this region. The IRAS far-infrared luminosity and the virial masses give the luminosity-mass ratios 18.1, 51.1 and 21.2 from the three lines.  相似文献   

20.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号