首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Russian boreal forests have been reshaped by wildland fire for millennia. While fire is a natural component of boreal ecosystems, it impacts various aspects of the environment and affects human well-being. Often fires occur over large remote areas with limited access, which makes their ground-based observation difficult. A significant progress has been made in mapping burned area from satellite imagery, which provides consistent and fairly unbiased estimates of fire impact on areas of interest at multiple scales. Although the information provided by burned area products is highly important, the spatio-temporal dynamics of individual fire events and their impact are less known. In high northern latitudes of Northern Eurasia, MODIS (Moderate Resolution Imaging Spectroradiometer) makes up to four daily observations from each of the Terra and Aqua satellites providing consistent data on fire development with high temporal frequency. Here we introduce an approach to reconstruct the development of fire events based on active fire detections from MODIS. Fire Spread Reconstruction (FSR) provides a means for characterization of fire occurrence over large territories from remotely sensed data. Individual fire detections are clustered within a GIS environment based on a set of rules determining proximity between fire observations in space and time. FSR determines the number of fire events, their approximate size, duration, and fire spread rate and allows for the analysis of fire occurrence and spread as a function of vegetation, fire season, fire weather and other parameters. FSR clusters were compared to burned scars mapped from Landsat7/ETM+ imagery over Yakutia (Russia). While some smaller burn scars were found to be formed through a continuous burning of a single fire event, large burned areas in Siberia were created by a constellation of fire events incorporating over 100 individual fire clusters. Geographic regions were found to have a stronger influence on the rates of fire activity in the area compared to vegetation zones. In addition, fire spread rates do not directly correlate with the intensity of a given fire season. FSR is also used to identify the points of ignition for individual fire events in spatio-temporal domain for fire danger and fire threat modeling. This approach presents another step towards the more complete characterization of fire events from remotely sensed data.  相似文献   

2.
Northern Eurasia Earth System Partnership Initiative, NEESPI, was established to address the global change processes associated with and/or originated within Northern Eurasia as well as to study the major socially-important processes within the region. NEESPI began as a US–Russian initiative but has quickly broadened into a fully international program. Scientists from 11 countries participated in preparing the NEESPI Science Plan. Current version of the Science Plan was released for public review on the World Wide Web in summer 2004 and finalized in December 2004. This paper provides an Overview of the Plan and is based, mainly, on its Executive Summary. The Overview describes the Plan's science themes and key science questions, provides a justification of the urgency studying Northern Eurasia from the global change prospective, and outlines research strategy and tools to address NEESPI science questions, as well as projected deliverables of the Initiative.  相似文献   

3.
This paper presents a synopsis of recently published studies by the co-authors, which show that several land surface characteristics unique to Northern Eurasia are responsible for facilitating a causal relationship between autumn snow anomalies in this region and subsequent hemispheric winter climate patterns. The large size and extratropical location of the contiguous Eurasian land mass results in broad, continental-scale interannual snow cover extent and depth variations throughout autumn and winter, and corresponding diabatic heating anomalies. These surface anomalies occur in the presence of a large region of stationary wave activity, produced in part by the orographic barriers that separate northern/central Eurasia from southern/eastern Eurasia. This co-location of snow-forced anomalies and ambient wave energy is unique to Northern Eurasia, and initiates a teleconnection pathway involving stationary wave–mean flow interaction throughout the troposphere and stratosphere, ultimately resulting in a modulation of the winter Arctic Oscillation (AO). Complementary new results are also presented which show that partial snow cover extent or snow depth only anomalies in Northern Eurasia are insufficient to initiate the teleconnection pathway and produce a winter AO signal. This synopsis provides a useful interpretation of the earlier studies in the specific context of Northern Eurasia regional climate and environmental change.  相似文献   

4.
Antia  H.M.  Basu  Sarbani  Pintar  J.  Pohl  B. 《Solar physics》2000,192(1-2):459-468
Using data from the Global Oscillation Network Group (GONG) covering the period from 1995 to 1998, we study the change with solar activity in solar f-mode frequencies. The results are compared with similar changes detected from the Michelson Doppler Imager (MDI) data. We find variations in f-mode frequencies which are correlated with solar activity indices. If these changes are due to variation in solar radius then the implications are that the solar radius decreases by about 5 km from minimum to maximum activity.  相似文献   

5.
《Astroparticle Physics》2012,35(9):591-607
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.  相似文献   

6.
Using intermediate degreep-mode frequency data sets for solar cycle 22, we find that the frequency shifts and magnetic activity indicators show a “hysteresis” phenomenon. It is observed that the magnetic indices follow different paths for the ascending and descending phases of the solar cycle while for radiative indices, the separation between the paths are well within the error limits.  相似文献   

7.
8.
The Boreal Forest biome (Taiga), dominated by evergreen and deciduous coniferous trees (Pinaceae), is circumpolar in its present distribution, covering a significant part of the total land area of the Northern Hemisphere and representing perhaps a third of the total forest area of the planet. Nothing comparable to this extant biome existed during the global “greenhouse” interval of the Late Mesozoic and Paleogene. Latitudinal temperature gradients should have confined boreal taxa to extremely high latitudes, but evergreen taxa do not appear to have been competitive in the lowlands of the high arctic, where the vegetation consisted of a unique circumpolar forest dominated by deciduous conifers and broad-leaved taxa.Probable sources for the pinaceous taxa that now characterize boreal latitudes were the Paleogene evergreen montane coniferous forests of the western North American Cordillera. Taphonomic factors limit the fossil record for such forests, but assemblages such as the Eocene Thunder Mountain (Idaho) and Bull Run (Nevada) floras were dominated by evergreen and deciduous Pinaceae that dominate extant montane, subalpine, and Boreal Forest associations. In response to post-Eocene global cooling, such forests presumably would have migrated to lower elevations, eventually spreading across high-latitude North America, subsequently reaching Eurasia via the Beringian corridor. This high-diversity coniferous forest was differentially winnowed and modified during subsequent migration southward in both the New and Old World. Despite its extensive geographic distribution, the Boreal Forest may be the youngest of the major forest biomes.If global warming ultimately results in a significant redistribution of terrestrial vegetation, the history of the Boreal Forest may well be reversed. Northward migration of the Boreal Forest may be characterized by loss of taxa and extensive community reorganization as individual taxa are pushed to their limits with respect to rates of migration and biotic stress takes its toll in the form of insect predation and disease. If evergreen taxa are unable to survive at low elevations at high polar latitudes, such conifers might once again become restricted to montane refugia and the lowlands of the high arctic would be populated by a larch-dominated deciduous conifer forest of low diversity and limited geographic extent. Given the biogeographic significance of the Boreal Forest biome, such a consequence would represent a profound ecological transformation.  相似文献   

9.
GPS measurements were collected within the framework of the VLNDEF (Victoria Land Network for DEFormation control) project, which was started in 1999 with the aim of detecting crustal deformation in Northern Victoria Land (Antarctica). The network was established in 1999 and is composed of one permanent station (TNB1), which has been observing since 1998, and 28 periodically surveyed control points. Three complete campaigns and some partial surveying of the network have been carried out to date.Data processing and analysis have been performed using an undifferenced approach for the network position within the ITRF. A double-differences-based strategy has been applied for movement detection. The data processing and analysis of results have been carried out for all available data, both periodically acquired and long time series.GPS measurements collected between December 1999 and February 2006 indicate a mean “absolute” motion of the region of ve = 11.3 mm/yr and vn = − 11.1 mm/yr and rock uplift rates of vu = 2.8 mm/yr. These values are consistent with Antarctic plate motion and the general postglacial rebound models of the region. The relative motions within VLNDEF are small and only few points show velocities greater than the confidence levels.  相似文献   

10.
Relations between basic indices of the Sun and the cosmogenic isotope 14C and 10Be records were derived using the Artificial Neural Network (ANN) technique. A reconstruction of the sunspot indices and changes in Total Solar Irradiance (TSI) was carried out. Long-term changes in TSI appear in the amplitude modulation of its 11-year cyclic variation as well as in its lower envelope describing variability of the background irradiance of the Sun. According to the reconstruction the irradiance has increased about 2.5 W m−2 since 1441.  相似文献   

11.
This study describes surface cyclone activity associated with the interannual variability in summer precipitation in northern Eurasia and how that activity may be connected to other climate signals. An east–west seesaw oscillation of precipitation across Siberia is the primary mode of interannual variability in the summer hydrological cycle over northern Eurasia. This variation occurs at sub-decadal timescales of about 6–8 years. The spatial characteristics of cyclone frequency and cyclone tracks at the two poles in variability [eastern Siberia (ES)-wet–western Siberia (WS)-dry and WS-wet–ES-dry] were examined, and temporal variability in regional cyclone frequency was compared to basin-scale precipitation variability. The analysis period was from 1973 to 2002, when the precipitation variability signal was predominant.Cyclone behavior suggested that the regions of enhanced (reduced) cyclone activity coincided with regions of increased (decreased) precipitation in each phase of the oscillation. Such behavior reflects the zonal displacement of the track of frequent storm activity that accompanies the changes in precipitation. Comparisons of the temporal characteristics confirmed the importance of regional cyclone frequency on precipitation variability in both eastern and western Siberia. Low-frequency changes in regional cyclone activity may produce the precipitation oscillation. We used various climate signals to explore connections between regional precipitation and cyclone activity in Siberia. Results suggest that the North Atlantic Oscillation (NAO) from the preceding winter is significantly and negatively correlated with summer surface cyclone frequency and precipitation over western Siberia. Enhanced (reduced) summer cyclone activity and precipitation in western Siberia follows low- (high-) winter NAO. However, the physical mechanisms linking summer cyclone activity and precipitation over western Siberia with the preceding climate conditions associated with the winter NAO remain unclear.  相似文献   

12.
Nearly 15 years after the proposal of the superanoxia concept (Isozaki, Y., 1994. Superanoxia across the Permo–Triassic boundary: record in accreted deep-sea pelagic chert in Japan. In: Embry, A.F., Beauchamp, B., Glass, D.J. (Eds.), Pangea: Global Environments and Resources. Memoir, Canadian Society of Petroleum Geologists, 17, pp. 805–812.), it is an appropriate timing to re-evaluate its geological context with the updated dataset. Kakuwa (Kakuwa, Y., 2008. Evaluation of palaeo-oxygenation of the ocean bottom across the Permian–Triassic boundary. Global and Planetary Change 63, 40–56.) lately discussed that the deep-sea anoxia across the Permian–Triassic boundary (P–TB) may have been much shorter than previously proposed, on the basis of ichnofabrics and geochemical data; however, his interpretations of the data do not appear straightforward nor persuading, and thus his claim is likely misled. Here we raise comments to his explanation on the following four issues: 1) invalid application of ichnofabric indices for shallow sea sediments to deep-sea cherts, 2) misinterpretation of Ce anomaly as a redox indicator, 3) improper application of various redox sensitive trace elements, and 4) questionable interpretations of δ34S data of pyrites.  相似文献   

13.
Because of the absence of the atmosphere, the short duration of the Phobos day (7.7 hours), and the presence of a highly porous and fine-grained soil on the Phobos surface, all components of the future Russian Fobos–Grunt lander will operate under frequent and sharp temperature changes: from positive to extremely low negative temperatures. As a consequence, information about the temperature regime directly on the surface of the Martian satellite and in the near-surface layer appears to be extremely important. The proposed publication contains both the information about the thermophysical properties of the surface regolith of Phobos, derived from observations made with the Mariner 9 orbiter, the Viking orbiter, the Fobos-2 spacecraft, and the Mars Global Surveyor orbiter, and the results of the numerical modeling of the thermal regime of the surface regolith layer (on diurnal and seasonal time scales) in the area of the potential Fobos–Grunt landing site. We performed this modeling by taking into account the seasons on Mars and the effects due to the eclipse of Phobos by Mars.  相似文献   

14.
We compare changes in the frequencies of solar acoustic modes with degree between 0 and 2, as derived from Global Oscillation Network Group (GONG), Birmingham Solar Oscillations Network (BiSON) and Michelson Doppler Imager (MDI) spectra obtained between 1995 and 2003. We find that, after the solar-activity dependence has been removed from the frequencies, there remain variations that appear to be significant, and are often well correlated between the different data sets. We consider possible explanations for these fluctuations, and conclude that they are likely to be related to the stochastic excitation of the modes. The existence of such fluctuations has possible relevance to the analysis of other low-degree acoustic mode spectra such as those from solar-type stars.  相似文献   

15.
Nine representative sediment sequences and pollen diagrams obtained during the Quaternary mapping programme carried out by the Geological Expedition (St. Petersburg, Russia) between 1960s and 1980s are presented from the Vologda area, NW Russian Plain, covering the time span from the Moscow cold (Saale) stage into the Late Valdai (Weichsel) substage. This work was done in order to shed light on the evolution of palaeoenvironments, vegetation and climate in the area. The results suggest that two major depressions in the Vologda area, namely the Mologa–Sheksnian and Prisukhonian basins, witnessed lake level fluctuations that were most likely closely linked to climatic fluctuations. It is suggested that during the Mikulino (Eem) thermal optimum most of the lowland areas were dry land. However, during the Early and Middle Valdai, the large depressions started to flood as a result of wet and cold climate. This caused the accumulation of lacustrine and also lacustrine–alluvial and lacustrine–bog sediments into the basins. The Valdai forest composition varied between closed spruce–birch forests and treeless tundra. Lakes persisted throughout the Valdai stage including the extremely dry last glacial maximum (LGM)-time when the Scandinavian Ice Sheet dammed the northbound rivers in the Vologda area.  相似文献   

16.
Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of these various forcings will be necessary in order to distinguish between, and to detect, the variety of natural and anthropogenic influences and on climate.  相似文献   

17.
Mavromichalaki  H.  Plainaki  C.  Zouganelis  I.  Petropoulos  B. 《Solar physics》2003,218(1-2):63-78
Global changes of the solar activity can be expressed by the coronal index that is based upon the total irradiance of the coronal 530.3 nm green line from observations at five stations. Daily mean values of the coronal index of solar activity and other well-correlated solar indices are analyzed for the period 1966–1998 covering over three solar cycles. The significant correlation of this index with the sunspot number and the solar flare index have led to an analytical expression which can reproduce the coronal index of solar activity as a function of these parameters. This expression explains well the existence of the two maxima during the solar cycles taking into account the evolution of the magnetic field that can be expressed by some sinusoidal terms during solar maxima and minima. The accuracy between observed and calculated values of the coronal index on a daily basis reaches the value of 71%. It is concluded that the representative character of the coronal index is preserved even when using daily data and can therefore allow us to study long-term, intermediate and short-term variations for the Sun as a star, in association with different periodical solar–terrestrial phenomena useful for space weather studies.  相似文献   

18.
Inverse and direct methods have been used to analyze a large number of borehole temperature logs in order to infer past climatic changes. Results indicate a warming of 1–2°C in eastern and central Canada during the past 150 years. A period of cooling between 500 and 200 years before present, corresponding to the time of the “Little Ice Age”, has also been identified in the same areas. A regional ground temperature history is estimated for eastern and central Canada from the simultaneous inversion of several temperature logs. The inferred temperature changes appear correlated with the concentration of atmospheric carbon dioxide as reported from a Greenland ice core, and agree with existing meteorological and dendrochronological records for the area.  相似文献   

19.
简要介绍了上海GPS综合应用网(SCGAN)情况,分析了该网从2002年6月投入正常运行后,获取的2002年入梅前后长江三角洲地区高分辨率可降水量(PWV)资料,描述了PWV所反映的长江三角洲地区的入梅过程和特点,以及把GPS/PWV同化到中尺度数值预报模式初始场中的试验。  相似文献   

20.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号