首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
地球物理   2篇
地质学   3篇
天文学   51篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   4篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有56条查询结果,搜索用时 923 毫秒
1.
Mavromichalaki  H.  Plainaki  C.  Zouganelis  I.  Petropoulos  B. 《Solar physics》2003,218(1-2):63-78
Global changes of the solar activity can be expressed by the coronal index that is based upon the total irradiance of the coronal 530.3 nm green line from observations at five stations. Daily mean values of the coronal index of solar activity and other well-correlated solar indices are analyzed for the period 1966–1998 covering over three solar cycles. The significant correlation of this index with the sunspot number and the solar flare index have led to an analytical expression which can reproduce the coronal index of solar activity as a function of these parameters. This expression explains well the existence of the two maxima during the solar cycles taking into account the evolution of the magnetic field that can be expressed by some sinusoidal terms during solar maxima and minima. The accuracy between observed and calculated values of the coronal index on a daily basis reaches the value of 71%. It is concluded that the representative character of the coronal index is preserved even when using daily data and can therefore allow us to study long-term, intermediate and short-term variations for the Sun as a star, in association with different periodical solar–terrestrial phenomena useful for space weather studies.  相似文献   
2.
A new relation has been given in order to calculate the intensity of the green line of the solar corona at 5303 Å as a function of the number of proton events N P and the R (R) index of solar activity. This relation is available for the 19th and 20th solar cycles. Moreover there is given a theoretical justification of this relationship taking into account as a new parameter the evolution of the coronal magnetic field during the solar cycle.  相似文献   
3.
A database combining information about solar proton enhancements (SPEs) near the Earth and soft X-ray flares (GOES measurements) has been used for the study of different correlations through the period from 1975 to May 2006. The emphasis of this work is on the treatment of peak-size distributions of SXR flares and SPEs. The frequency of SXR flares and solar proton events (>10 and >100 MeV, respectively) for the past three solar cycles has been found to follow mainly a power-law distribution over three to five orders of magnitude of fluxes, which is physically correct beyond the “sensitivity” problem with the smallest peak values. The absence of significant spectral steepening in the domain of the highest peak values demonstrates that during the period considered, lasting 30 years, the limit of the highest flare’s energy release has not yet been achieved. The power-law exponents were found to be −2.19±0.04, −1.34±0.02, and −1.46±0.04, for the total SXR flare distribution and the total SPE distributions (for both E P>10 MeV and E P>100 MeV), respectively. For SPEs associated with flares located to the West of 20° W, the exponents are −1.22±0.05 (E P>10 MeV) and −1.26±0.03 (E P>100 MeV). The size distribution for corresponding flares follows a power law with a slope of −1.29±0.12. Thus, X-ray and proton fluxes produced in the same solar events have very similar distribution shapes. Moreover, the derived slopes are not incompatible with a linear dependence between X-ray flare power and proton fluxes near the Earth. A similar statistical relation is obtained independently from the direct comparison of the X-ray and proton fluxes. These all argue for a statistically significant relationship between X-ray and proton emissions.  相似文献   
4.
5.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   
6.
In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to ?0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.  相似文献   
7.
Application of analyzing time-series into trigonometric series allows the investigation of cosmic-ray intensity variations in a wide periodicity range from a few months to 10 or even more years. By this technique, the amplitude and the phase of all observed fluctuations can be given. For this purpose, cosmic-ray data of five ground-based neutron-monitor stations for the time interval 1964–1985 have been analyzed.Two kinds of periodicities appeared in these data. The first one includes occurrences at periods greater than two years, as the ones of 10.41, 8.41, and 5.50 yr, which differ very little in amplitude from station to station but are similar in phase, and the second one includes periodicities smaller than two years (24, 12, 8, and 6 months) which are similar in all stations but appeared in variable time intervals.The possible origin of each observed variation due to a contribution either of cosmic-ray interaction in the upper atmosphere or to the solar dynamics is discussed.  相似文献   
8.
The dependence of cosmic-ray intensity on 21st solar cycle phenomena has been studied using monthly cosmic-ray values from nine world wide Neutron Monitoring Stations.For this purpose the long-term cosmic-ray modulation is modelled by treating the most appropriate source functions among various solar, interplanetary and terrestrial activity indices as the input and the cosmic-ray intensity as the output of a linear system taking into account the corresponding time-lag. In this way the modulated galactic cosmic-ray intensity has been reproduced to a certain degree as the cosmic-ray variations follow the observations with a standard deviation of ~ 10%. Still remaining short-term variations in all stations with periods of 2.7 and 3.7 months can possibly be related to the galactic origin of cosmic-rays.The Simpson solar wind model improved by the spherically symmetric diffusion-convection theory can describe our proposed method.  相似文献   
9.
In this work the galactic cosmic ray modulation in relation to solar activity indices and heliospheric parameters during the years 1996??C?2010 covering solar cycle 23 and the solar minimum between cycles 23 and 24 is studied. A new perspective of this contribution is that cosmic ray data with a rigidity of 10 GV at the top of the atmosphere obtained from many ground-based neutron monitors were used. The proposed empirical relation gave much better results than those in previous works concerning the hysteresis effect. The proposed models obtained from a combination of solar activity indices and heliospheric parameters give a standard deviation <?10?% for all the cases. The correlation coefficient between the cosmic ray variations of 10?GV and the sunspot number reached a value of r=?0.89 with a time lag of 13.6±0.4 months. The best reproduction of the cosmic ray intensity is obtained by taking into account solar and interplanetary indices such as sunspot number, interplanetary magnetic field, CME index, and heliospheric current sheet tilt. The standard deviation between the observed and calculated values is about 7.15?% for all of solar cycle 23; it also works very well during the different phases of the cycle. Moreover, the use of the cosmic ray intensity of 10?GV during the long minimum period between cycles 23 and 24 is of special interest and is discussed in terms of cosmic ray intensity modulation.  相似文献   
10.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号