首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In a novel approach to studying viscous accretion flows, viscosity has been introduced as a perturbative effect, involving a first-order correction in the α-viscosity parameter. This method reduces the problem of solving a second-order non-linear differential equation (Navier–Stokes equation) to that of an effective first-order equation. Viscosity breaks down the invariance of the equilibrium conditions for stationary inflow and outflow solutions, and distinguishes accretion from wind. Under a dynamical systems classification, the only feasible critical points of this 'quasi-viscous' flow are saddle points and spirals. On large spatial scales of the disc, where a linearized and radially propagating time-dependent perturbation is known to cause a secular instability, the velocity evolution equation of the quasi-viscous flow has been transformed to bear a formal closeness with Schrödinger's equation with a repulsive potential. Compatible with the transport of angular momentum to the outer regions of the disc, a viscosity-limited length-scale has been defined for the full spatial extent over which the accretion process would be viable.  相似文献   

2.
We systematically analyse all the available X-ray spectra of disc accreting neutron stars (atolls and millisecond pulsars) from the RXTE data base. We show that while all these have similar spectral evolution as a function of mass accretion rate, there are also subtle differences. There are two different types of hard/soft transition, those where the spectrum softens at all energies, leading to a diagonal track on a colour–colour diagram, and those where only the higher energy spectrum softens, giving a vertical track. The luminosity at which the transition occurs is correlated with this spectral behaviour, with the vertical transition at   L / L Edd∼ 0.02  while the diagonal one is at ∼0.1. Superimposed on this is the well-known hysteresis effect, but we show that classic, large-scale hysteresis occurs only in the outbursting sources, indicating that its origin is in the dramatic rate of change of mass accretion rate during the disc instability. We show that the long-term mass accretion rate correlates with the transition behaviour, and speculate that this is due to the magnetic field being able to emerge from the neutron star surface for low average mass accretion rates. While this is not strong enough to collimate the flow except in the millisecond pulsars, its presence may affect the inner accretion flow by changing the properties of the jet.  相似文献   

3.
The galactic black hole binary systems give an observational template showing how the accretion flow changes as a function of increasing mass accretion rate, or L/LEdd. These data can be synthesised with theoretical models of the accretion flow to give a coherent picture of accretion in strong gravity, in which the major hard-soft spectral transition is triggered by a change in the nature and geometry of the inner accretion flow from a hot, optically thin plasma to a cool, optically thick accretion disc. However, a straightforward application of these models to AGN gives clear discrepancies in overall spectral shape. Either the underlying accretion model is wrong, despite its success in describing the Galactic systems and/or there is additional physics which breaks the simple scaling from stellar to supermassive black holes.  相似文献   

4.
Spherically symmetric transonic accretion of a fractal medium has been studied in both the stationary and the dynamic regimes. The stationary transonic solution is greatly sensitive to infinitesimal deviations in the outer boundary condition, but the flow becomes transonic and stable when its evolution is followed through time. The evolution towards transonicity is more pronounced for a fractal medium than it is for a continuum, and in the former case the static sonic condition is met on relatively larger length scales. The dynamic approach also shows that there is a remarkable closeness between an equation  of motion for a perturbation in the flow, and the metric of an analogue acoustic black hole. The stationary inflow solutions of a fractal medium are as much stable under the influence of linearized perturbations as they are for the fluid continuum.  相似文献   

5.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

6.
The presence of an imposed vertical magnetic field may drastically influence the structure of thin accretion discs. If the field is sufficiently strong, the rotation law can depart from the Keplerian one. We consider the structure of a disc for a given eddy magnetic diffusivity but neglect details of the energy transport. The magnetic field is assumed to be in balance with the internal energy of the accretion flow. The thickness of the disc as well as the turbulent magnetic Prandtl number and the viscosity, α , are the key parameters of our model. The calculations show that the radial velocity can reach the sound speed for a magnetic disc if the thickness is comparable to that of a non-magnetic one. This leads to a strong amplification of the accretion rate for a given surface density. The inclination angle of the magnetic field lines can exceed the critical value 30° (required to launch cold jets) even for a relatively small magnetic Prandtl number of order unity. The toroidal magnetic fields induced at the disc surface are smaller than predicted in previous studies.  相似文献   

7.
We consider the effects of accretion stream overflow on the viscous dynamics of accretion discs in dwarf novae. If the stream from the secondary star is geometrically thick enough, some fraction of its material can flow over and under the disc. The mass and specific angular momentum of the stream are then deposited not only at the point of collision with the outer disc, but also at those radii in the inner disc with geometric heights that are large enough to intercept the residual stream, or near the radius where the disc has the same specific angular momentum as the stream. The overflowing stream can alter the behaviour of heating fronts and cooling fronts in the disc. If the mass fraction of the overflowing stream is of order tens of per cent, the deposition of mass in the inner parts of the disc is sufficient to change the character of the eruption light curves significantly.  相似文献   

8.
Gas falling quasi-spherically on to a black hole forms an inner accretion disc if its specific angular momentum l exceeds l ∗∼ r g c , where r g is the Schwarzschild radius. The standard disc model assumes l ≫ l ∗. We argue that, in many black hole sources, accretion flows have angular momenta just above the threshold for disc formation, l ≳ l ∗, and assess the accretion mechanism in this regime. In a range l ∗< l < l cr, a small-scale disc forms in which gas spirals fast into the black hole without any help from horizontal viscous stresses. Such an 'inviscid' disc, however, interacts inelastically with the feeding infall. The disc–infall interaction determines the dynamics and luminosity of the accretion flow. The inviscid disc radius can be as large as 14 r g, and the energy release peaks at 2 r g. The disc emits a Comptonized X-ray spectrum with a break at ∼100 keV. This accretion regime is likely to take place in wind-fed X-ray binaries and is also possible in active galactic nuclei.  相似文献   

9.
The transfer of energy and angular momentum in the magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc is discussed based on a mapping relation derived by considering the conservation of magnetic flux with two basic assumptions: (i) the magnetic field on the horizon is constant, (ii) the magnetic field on the disc surface varies as a power law with the radial coordinate of the disc. The following results are obtained: (i) the transfer direction of energy and angular momentum between the BH and the disc depends on the position of a co-rotation radius relative to the MC region on the disc, which is eventually determined by the BH spin; (ii) the evolution characteristics of a rotating BH in the MC process without disc accretion are depicted in a parameter space, and a series of values of the BH spin are given to indicate the evolution characteristics; (iii) the efficiency of converting accreted mass into radiation energy of a BH–disc system is discussed by considering the coexistence of disc accretion and the MC process; (iv) the MC effects on disc radiation and the emissivity index are discussed and it is concluded that they are consistent with the recent XMM–Newton observation of the nearby bright Seyfert 1 galaxy MCG–6-30-15 with reference to a variety of parameters of the BH–disc system.  相似文献   

10.
Since its discovery in 1990, UW CrB (also known as MS1603+2600) has remained a peculiar source without firm classification. Our current understanding is that it is an accretion disc corona (ADC) low-mass X-ray binary. In this paper, we present results from our photometric campaign dedicated to studying the changing morphology of the optical light curves. We find that the optical light curves show remarkable evidence for strongly evolving light curve shapes. In addition, we find that these changes show a modulation at a period of ∼5 d. We interpret these changes as either due to strong periodic accretion disc warping or due to other geometrical changes because of disc precession at a period of 5 d. Finally, we have detected 11 new optical bursts, the phase distribution of which supports the idea of a vertically extended asymmetric accretion disc.  相似文献   

11.
12.
We construct a steady analytic accretion flow model for a finite rotating gas cloud that accretes material to a central gravitational object. The pressure gradients of the flow are considered to be negligible, and so the flow is ballistic. We also assume a steady flow and consider the particles at the boundary of the spherical cloud to be rotating as a rigid body, with a fixed amount of inwards radial velocity. This represents a generalization to the traditional infinite gas cloud model described by Ulrich. We show that the streamlines and density profiles obtained deviate largely from the ones calculated by Ulrich. The extra freedom in the choice of the parameters on the model can naturally account for the study of protostars formed in dense clusters by triggered mechanisms, where a wide variety of external physical mechanisms determine the boundary conditions. Also, as expected, the model predicts the formation of an equatorial accretion disc about the central object with a radius different from the one calculated by Ulrich.  相似文献   

13.
The hydrodynamic interaction of an accretion disc with its central object is reanalysed within the framework of the slim-disc approximation. Arguments are presented against an interpretation of the total angular momentum flux as an eigenvalue of the system. A simple intuitive consideration is provided, which shows that the central object may be in a state of stationary rotation even if the disc imposes the constraint of a finite angular momentum flux into it. It is argued that equilibrium rotation is characterized by vanishing viscous torque rather than by zero total angular momentum flux. As a consequence, the central object can be in a state of stationary rotation below the break-up limit, although its angular momentum increases. Despite accretion, even for positive total angular momentum flux and subcritical rotation, central objects are spun down within a considerable range of their parameters. The results are illustrated by application to FU Orionis systems.  相似文献   

14.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

15.
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics.  相似文献   

16.
The non-linear fluid dynamics of a warped accretion disc was investigated in an earlier paper by developing a theory of fully non-linear bending waves in a thin, viscous disc. That analysis is extended here to take proper account of thermal and radiative effects by solving an energy equation that includes viscous dissipation and radiative transport. The problem is reduced to simple one-dimensional evolutionary equations for mass and angular momentum, expressed in physical units and suitable for direct application. This result constitutes a logical generalization of the alpha theory of Shakura & Sunyaev to the case of a time-dependent warped accretion disc. The local thermal–viscous stability of such a disc is also investigated.  相似文献   

17.
18.
Episodic ejection of plasma blobs has been observed in many black hole systems. While steady, continuous jets are believed to be associated with large-scale open magnetic fields, what causes the episodic ejection of blobs remains unclear. Here by analogy with the coronal mass ejection on the Sun, we propose a magnetohydrodynamical model for episodic ejections from black holes associated with the closed magnetic fields in an accretion flow. Shear and turbulence of the accretion flow deform the field and result in the formation of a flux rope in the disc corona. Energy and helicity are accumulated and stored until a threshold is reached. The system then loses its equilibrium and the flux rope is thrust outward by the magnetic compression force in a catastrophic way. Our calculations show that for parameters appropriate for the black hole in our Galactic centre, the plasmoid can attain relativistic speeds in about 35 min.  相似文献   

19.
The stationary, spherically symmetric, polytropic and inviscid accretion flow in the Schwarzschild metric has been set-up as an autonomous first-order dynamical system, and it has been studied completely analytically. Of the three possible critical points in the flow, the one that is physically realistic behaves like the saddle point of the standard Bondi accretion problem. One of the two remaining critical points exhibits the strange mathematical behaviour of being either a saddle point or a centre-type point, depending on the values of the flow parameters. The third critical point is always unphysical and behaves like a centre-type point. The treatment has been extended to pseudo-Schwarzschild flows for comparison with the general relativistic analysis.  相似文献   

20.
We consider the power of a relativistic jet accelerated by the magnetic field of an accretion disc. It is found that the power extracted from the disc is mainly determined by the field strength and configuration of the field far from the disc. Comparing it with the power extracted from a rotating black hole, we find that the jet power extracted from a disc can dominate over that from the rotating black hole. However, in some cases, the jet power extracted from a rapidly rotating hole can be more important than that from the disc, even if the poloidal field threading the hole is not significantly larger than that threading the inner edge of the disc. The results imply that the radio-loudness of quasars may be governed by its accretion rate, which might be regulated by the central black hole mass. It is proposed that the different disc field generation mechanisms might be tested against observations of radio-loud quasars if their black hole masses are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号