首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A composite sample of NIR-selected galaxies having extended multicolor coverage has been used to probe the cosmological evolution of the blue luminosity function and of the stellar mass function. The bright fraction of the sample has spectroscopic redshifts, and the remaining fraction well-calibrated photometric redshifts. The resulting blue luminosity function shows an increasing brightening with redshift respect to the local luminosity function. Hierarchical CDM models predictions are in agreement only at low and intermediate redshifts but fail to reproduce the observed brightening at high redshifts (z ∼ 2–3). This brightening marks the epoch where starburst activity triggered by galaxy interactions could be an important physical mechanism for the galaxy evolution. At the same time the NIR galaxy sample has been used to trace the evolution of the cosmological stellar mass density up to ∼3. A clear decrease of the average mass density is apparent with a fraction ∼15% of the local value at z ∼ 3. UV bright star-forming galaxies are substancial contributors to the evolution of the stellar mass density. Although these results are globally consistent with Λ–CDM scenarios, they tend to underestimate the mass density produced by more massive galaxies present at z > 2.  相似文献   

3.
We analyse near-infrared Hubble Space Telescope ( HST )/Near-Infrared Camera and Multi-Object Spectrometer F 110 W ( J ) and F 160 W ( H ) band photometry of a sample of 27 i '-drop candidate   z ≃ 6  galaxies in the central region of the HST /Advanced Camera for Surveys Ultra Deep Field . The infrared colours of the 20 objects not affected by near neighbours are consistent with a high-redshift interpretation. This suggests that the low-redshift contamination of this i '-drop sample is smaller than that observed at brighter magnitudes, where values of 10–40 per cent have been reported. The J – H colours are consistent with a slope flat in   fν ( fλ ∝λ−2)  , as would be expected for an unreddened starburst. However, there is evidence for a marginally bluer spectral slope  ( fλ ∝λ−2.2)  , which is perhaps indicative of an extremely young starburst (∼10 Myr old) or a top heavy initial mass function and little dust. The low levels of contamination, median photometric redshift of   z ∼ 6.0  and blue spectral slope, inferred using the near-infrared data, support the validity of the assumptions in our earlier work in estimating the star formation rates, and that the majority of the i -drop candidates galaxies lie at   z ∼ 6  .  相似文献   

4.
We present the results of colour selection of candidate high-redshift galaxies in Hubble Deep Field South (HDF-S) using the Lyman dropout scheme. The HDF-S data we discuss were taken in a number of different filters extending from the near-UV (F300W) to the infrared (F222M) in two different fields. This allows us to select candidates with redshifts from z ∼3 to z ∼12. We find 15 candidate z ∼3 objects (F300W dropouts), one candidate z ∼4 object (F450W dropout) and 16 candidate z ∼5 objects (F606W dropouts) in the ∼4.7‐arcmin2 WFPC-2 field, and four candidate z ∼6 objects (optical dropouts) and one candidate z ∼8 object (F110W dropout) in the 0.84-arcmin2 NICMOS-3 field. No F160W dropouts are found ( z ∼12). We compare our selection technique with existing data for Hubble Deep Field North (HDF-N) and discuss alternative interpretations of the objects. We conclude that there are a number of lower redshift interlopers in the selections, including one previously identified object, and reject those objects most likely to be foreground contaminants. Even after this we conclude that the F606W dropout list is likely to still contain substantial foreground contamination. The lack of candidate very-high-redshift UV-luminous galaxies supports earlier conclusions by Lanzetta et al. We discuss the morphologies and luminosity functions of the high-redshift objects, and their cosmological implications.  相似文献   

5.
We present results from a deep mid-infrared survey of the Hubble Deep Field South (HDF-S) region performed at 6.7 and 15 μm with the ISOCAM instrument on board the Infrared Space Observatory ( ISO ). The final map in each band was constructed by the co-addition of four independent rasters, registered using bright sources securely detected in all rasters, with the absolute astrometry being defined by a radio source detected at both 6.7 and 15 μm. We sought detections of bright sources in a circular region of radius 2.5 arcmin at the centre of each map, in a manner that simulations indicated would produce highly reliable and complete source catalogues using simple selection criteria. Merging source lists in the two bands yielded a catalogue of 35 distinct sources, which we calibrated photometrically using photospheric models of late-type stars detected in our data. We present extragalactic source count results in both bands, and discuss the constraints that they impose on models of galaxy evolution, given the volume of space sampled by this galaxy population.  相似文献   

6.
7.
8.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

9.
10.
We have combined multiwavelength observations of a selected sample of star-forming galaxies with galaxy evolution models in order to compare the results obtained for different star formation rate (SFR) tracers and to study the effect that the evolution of the star-forming regions has on them. We also aimed at obtaining a better understanding of the corrections due to extinction and nuclear activity on the derivation of the SFR. We selected the sample from Chandra data for the well studied region Chandra Deep Field -South (CDFS) and chose the objects that also have ultraviolet (UV) and infrared (IR) data from Galaxy Evolution Explorer ( GALEX ) and Great Observatories Origins Deep Survey (GOODS) Spitzer , respectively.
Our main finding is that there is good agreement between the extinction corrected SFR(UV) and the SFR(X), and we confirm the use of X-ray luminosities as a trustful tracer of recent star formation activity. Nevertheless, at SFR(UV) larger than about  5 M yr−1  there are several galaxies with an excess of SFR(X) suggesting the presence of an obscured active galactic nucleus (AGN) not detected in the optical spectra. We conclude that the IR luminosity is driven by recent star formation even in those galaxies where the SFR(X) is an order of magnitude higher than the SFR(UV) and therefore may harbour an AGN. One object shows SFR(X) much lower than expected based on the SFR(UV); this SFR(X) 'deficit' may be due to an early transient phase before most of the massive X-ray binaries were formed. An X-ray deficit could be used to select extremely young bursts in an early phase just after the explosion of the first supernovae associated with massive stars and before the onset of massive X-ray binaries.  相似文献   

11.
12.
We have extended our previous analysis of morphologically selected elliptical and S0 galaxies in the Hubble Deep Field (HDF) North to include Hubble Space Telescope ( HST ) data in the HDF South and the HDFS–NICMOS areas. Our final sample amounts to 69 E/S0 galaxies with K <20.15 over an area of 11 arcmin2. Although a moderately small number over a modest sky area, this sample benefits from the best imaging and photometric data available on high-redshift galaxies. Multi-waveband photometry allows us to estimate with good accuracy the redshifts for the majority of these galaxies, which lack a spectroscopic measure. We confirm our previous findings that massive E/S0s tend to disappear from flux-limited samples at z >1.4. This adds to the evidence that the rest-frame colours and spectral energy distributions (SEDs) of the numerous objects found at 0.8< z <1.2 are inconsistent with a very high redshift of formation for the bulk of stars, while they are more consistent with protracted (either continuous or episodic) star formation down to z ≤1. These results based on high-quality imaging on a small field can be complemented with data from colour-selected extremely red objects (EROs) on much larger sky areas: our claimed demise of E/S0s going from z =1 to z =1.5 is paralleled by a similarly fast decrease in the areal density of EROs when the colour limit is changed from ( R − K )=5 to ( R − K )=6 (corresponding to z ≃1 and z ≃1.3 respectively). Altogether, the redshift interval from 1 to 2 seems to correspond to a very active phase for the assembly of massive E/S0 galaxies in the field, and also probably one where a substantial fraction of their stars are formed.  相似文献   

13.
14.
15.
Deep long-slit spectroscopic data are presented for a sample of 14 3CR radio galaxies at redshift z ∼1, previously studied in detail using the Hubble Space Telescope , the Very Large Array, and the UK Infrared Telescope (UKIRT). Analysis of the [O  ii ] 3727 emission-line structures at ∼5 Å spectral resolution is carried out to derive the kinematic properties of the emission-line gas. In line with previous lower resolution studies, a wide variety of kinematics are seen, from gas consistent with a mean rotational motion through to complex structures with velocity dispersions exceeding 1000 km s −1. The data confirm the presence of a high-velocity gas component in 3C 265 and detached emission-line systems in 3C 356 and 3C 441, and show for the first time that the emission-line gas in the central regions of 3C 324 is composed of two kinematically distinct components. Emission-line fluxes and the colour of the continuum emission are determined down to unprecedentedly low observed wavelengths, λ <3500 Å, sufficiently short that any contribution of an evolved stellar population is negligible. An accompanying paper investigates the variation in the emission-line ratios and velocity structures within the sample, and draws conclusions as to the origin of the ionization and kinematics of these galaxies.  相似文献   

16.
17.
We present a statistical study of a very large sample of H  ii galaxies taken from the literature. We focus on the differences in several properties between galaxies that show the auroral line [O  iii ]λ4363 and those that do not present this feature in their spectra. It turns out that objects without this auroral line are more luminous, are more metal-rich and present a lower ionization degree. The underlying population is found to be much more important for objects without the [O  iii ]λ4363 line, and the effective temperature of the ionizing star clusters of galaxies not showing the auroral line is probably lower. We also study the subsample of H  ii galaxies whose properties most closely resemble the properties of the intermediate-redshift population of luminous compact blue galaxies (LCBGs). The objects from this subsample are more similar to the objects not showing the [O  iii ]λ4363 line. It might therefore be expected that the intermediate- redshift population of LCBGs is powered by very massive, yet somewhat aged, star clusters. The oxygen abundance of LCBGs would be greater than the average oxygen abundance of local H  ii galaxies.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号