首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
We interpret the historical activity of comet 55P/Tempel–Tuttle in terms of the observed characteristics of present-day short period comets. In this respect, it is now realized that such comets are liable to undergo significant outburst and mantle loss events at intervals separated by of order a few hundred years. On this basis one might well expect comet 55P/Tempel–Tuttle to have undergone several outbursts since its earliest sighing in 1366. The limited absolute magnitude data available for 55P/Tempel–Tuttle is not inconsistent with the suggestion that the comet underwent outbursts during its 1699 and 1865 perihelion returns. If the outbursts of comet 55P/Tempel–Tuttle are interpreted in terms of mantle loss events then the bright, electrophonic sound producing fireballs reported during the great Leonid meteor storm of 1833 may have been due to the Earth sampling mantle material ejected during the outburst of 1699. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

3.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

4.
We have simulated the formation and evolution of comet 1P/Halley’s meteoroid stream by ejecting particles from the nucleus 5000 years ago and propagating them forward to the present. Our aim is to determine the existence and characteristics of associated meteor showers at Mars and Venus and compare them with 1P/Halley’s two known showers at the Earth. We find that one shower should be present at Venus and two at Mars. The number of meteors in those atmospheres would, in general, be less than that at the Earth. The descending node branch of the Halley stream at Mars exhibits a clumpy structure. We identified at least one of these clumps as particles trapped in the 7:1 mean motion resonance with Jupiter, potentially capable of producing meteor ourbursts of ZHR∼1000 roughly once per century.  相似文献   

5.
The successful application of modern observing techniques for Leonid storm observations show that meteor (shower) detections will have a bright future if the field will pursue difficult but important questions. How to forecast a satellite threatening meteor storm? What happens to the organic matter in meteors and can this be an important source of prebiotic molecules? What range of variations in composition and morphology exists among cometary grains and what does this tell us about the origin of the solar system? What long-period comets approach Earth orbit and can meteoroid streams provide early warning for giant impacts? What are the sources of interstellar and interplanetary grains? Just to mention a few. To answer these questions will need new technologies and facilities, some of which are being developed for other use. This may include NASA’s Stratospheric Observatory For Infrared and sub-millimeter Astronomy (SOFIA). In addition, big-science space missions can drive the field if meteor detections are an integral part. Special events, such as meteor outbursts and the “artificial meteor” from the reentry of sample return capsules from interplanetary space, can mobilize observing and theoretical efforts. These and other future opportunities are briefly discussed.  相似文献   

6.
The cometary meteoroid ejection model of Jones and Brown [Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series 104 (1996b) 137] was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory’s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 h time steps along the comet’s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge–Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting–Robertson drag, and the gravitational forces of the planets, which were computed using JPL’s DE406 planetary ephemerides. An impact parameter (IP) was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.  相似文献   

7.
This study is motivated by the possibility of determining the large-body meteoroid flux at the orbit of Venus. Towards this end, we attempt to estimate the times at which enhanced meteoric activity might be observed in the planet's atmosphere. While a number of meteoroid streams are identified as satisfying common Earth and Venus intercept conditions, it is not clear from the Earth-observed data if these streams contain large-body meteoroids. A subset of the Taurid Complex objects may produce fireball-rich meteor showers on Venus. A total of 11 short-period, periodic comets and 46 near-Earth asteroids approach the orbit of Venus to within 0.1 au, and these objects may have associated meteoroid streams. Comets 27P/Crommelin and 7P/Pons–Winnecke are identified as candidate parents to possible periodic meteor showers at the orbit of Venus.  相似文献   

8.
Atmospheric angular momentum variations of a planet are associated with the global atmospheric mass redistribution and the wind variability. The exchange of angular momentum between the fluid layers and the solid planet is the main cause for the variations of the planetary rotation at seasonal time scales. In the present study, we investigate the angular momentum variations of the Earth, Mars and Venus, using geodetic observations, output of state-of-the-art global circulation models as well as assimilated data. We discuss the similarities and differences in angular momentum variations, planetary rotation and angular momentum exchange for the three terrestrial planets. We show that the atmospheric angular momentum variations for Mars and Earth are mainly annual and semi-annual whereas they are expected to be “diurnal” on Venus. The wind terms have the largest contributions to the LOD changes of the Earth and Venus whereas the matter term is dominant on Mars due to the CO2 sublimation/condensation. The corresponding LOD variations (ΔLOD) have similar amplitudes on Mars and Earth but are much larger on Venus, though more difficult to observe.  相似文献   

9.
The investigation of plasma tails of comets is an important part of comet research. Different classifications of plasma tails of comets are proposed. Plasma acceleration in the tails is investigated in sufficient detail. Several cometary forms are explained. Plasma tails of Mars and Venus were observed during the first studies of these planets. They are associated with the capture of ionized atoms and exosphere molecules by the solar wind magnetized plasma flow. Distinct plasma tails of Mars and Venus are caused by the mass loading of the solar wind with heavy ions. It was shown that the transverse dimension of the tails of Mars, Venus, and comets can be quite accurately determined by production rate of the obstacle to the solar wind flow. While plasma tails of Mars and Venus are investigated by in situ measurements from spacecraft, observations of comet tails from the Earth make it possible to see the entire object under study and to monitor changes in its structure. A certain similarity of cometary and planetary tails can be explained by the nonmagnetic nature of both types of bodies. Thus, it is reasonable to suppose that investigations of plasma tails of comets can supplement the information obtained by in situ methods of the study of the planets. In this paper, plasma tails of comets, presumably analogous to the plasma tails of Mars and Venus, have been identified on modern photographs of comets (more than 1500 photographs viewed). Only quasi-steady laminar tails are considered. They are divided into two types: double structures and outflows. The paper attempts to define the 3D structure of double structures and to determine certain characteristics of outflows.  相似文献   

10.
Meteors are streaks of light seen in the upper atmosphere when particles from the inter-planetary dust complex collide with the Earth. Meteor showers originate from the impact of a coherent stream of such dust particles, generally assumed to have been recently ejected from a parent comet. The parent comets of these dust particles, or meteoroids, fortunately, for us tend not to collide with the Earth. Hence there has been orbital changes from one to the other so as to cause a relative movement of the nodes of the meteor orbits and that of the comet, implying changes in the energy and/or angular momentum. In this review, we will discuss these changes and their causes and through this place limits on the ejection process. Other forces also come into play in the longer term, for example perturbations from the planets, and the effects of radiation pressure and Poynting–Robertson drag. The effect of these will also be discussed with a view to understanding both the observed evolution in some meteor streams. Finally we will consider the final fate of meteor streams as contributors to the interplanetary dust complex.  相似文献   

11.
The radiogenic and primordial noble gas content of the atmospheres of Venus, Earth, and Mars are compared with one another and with the noble gas content of other extraterrestial samples, especially meteorites. The fourfold depletion of 40Ar for Venus relative to the Earth is attributed to the outgassing rates and associated tectonics and volcanic styles for the two planets diverging significantly within the first billion or so years of their history, with the outgassing rate for Venus becoming much less than that for the Earth at subsequent times. This early divergence in the tectonic style of the two planets may be due to a corresponding early onset of the runaway greenhouse on Venus. The 16-fold depletion of 40Ar for Mars relative to the Earth may be due to a combination of a mild K depletion for Mars, a smaller fraction of its interior being outgassed, and to an early reduction in its outgassing rate. Venus has lost virtually all of its primordial He and some of its radiogenic He. The escape flux of He may have been quite substantial in Venus' early history, but much diminished at later times, with this time variation being perhaps strongly influenced by massive losses of H2 resulting from efficient H2O loss processes.Key trends in the primordial noble gas content of terrestial planetary atmospheres include (1) a several orders of magnitude decrease in 20Ne and 36Ar from Venus to Earth to Mars; (2) a nearly constant 20Ne/36Ar ratio which is comparable to that found in the more primitive carbonaceous chondrites and which is two orders of magnitude smaller than the solar ratio; (3) a sizable fractionation of Ar, Kr, and Xe from their solar ratios, although the degree of fractionation, especially for 36Ar/132Xe, seems to decrease systematically from carbonaceous chondrites to Mars to Earth to Venus; and (4) large differences in Ne and Xe isotopic ratios among Earth, meteorites, and the Sun. Explaining trends (2), (2) and (4), and (1) pose the biggest problems for the solar-wind implantation, primitive atmosphere, and late veneer hypotheses, respectively. It is suggested that the grain-accretion hypothesis can explain all four trends, although the assumptions needed to achieve this agreement are far from proven. In particular, trends (1), (2), (3), and (4) are attributed to large pressure but small temperature differences in various regions of the inner solar system at the times of noble gas incorporation by host phases; similar proportions of the host phases that incorporated most of the He and Ne on the one hand (X) and Ar, Kr, and Xe on the other hand (Q); a decrease in the degree of fractionation with increasing noble-gas partial pressure; and the presence of interstellar carriers containing isotopically anomalous noble gases.Our analysis also suggests that primordial noble gases were incorporated throughout the interior of the outer terrestial planets, i.e., homogeneous accretion is favored over inhomogeneous accretion. In accord with meteorite data, we propose that carbonaceous materials were key hosts for the primordial noble gases incorporated into planets and that they provided a major source of the planets' CO2 and N2.  相似文献   

12.
2000—2049年行星天象(一)   总被引:1,自引:1,他引:0  
本文给出 2 0 0 0 - 2 0 4 9年行星天象的一部分 ,包括水星、金星的东、西大距 ,留及上、下合日 ;金星最亮和最接近地球 ;外行星冲日、最接近地球、合日、留 ;地球和外行星过远近日点计1 5个表  相似文献   

13.
E Lyytinen 《Icarus》2003,162(2):443-452
Long-period comets have narrow one-revolution old dust trails that can cause meteor outbursts when encountered by Earth. To facilitate observing campaigns that will characterize and perhaps help find Earth-threatening, long-period comets from their trace of meteoric debris, we use past accounts of outbursts from 14 different showers to calculate the future dust trail positions near Earth’s orbit. We also examine known near-Earth, long-period comets and identify five potential new showers, which can be utilized to learn more about these objects. We demonstrate that it is the one-revolution trail that is responsible for meteor outbursts. A method that calculates in what year these showers are likely to return and at what hour is presented. The calculations improve on earlier approximate methods that used the Sun’s reflex motion to gauge the trail motion relative to Earth’s orbit.  相似文献   

14.
Geological exploration of the solar system shows that solid-surfaced planets and satellites are subject to endogenic processes (volcanism and tectonism) and exogenic processes (impact cratering and gradation). The present appearance of planetary suffaces is the result of the complex interplay of these processes and is the linked to the evolution of planets and their environments. Terrestrial planets that have dynamic atmospheres are Earth, Mars, and Venus. Atmospheric interaction with the surfaces of these planets, oraeolian activity, is a form of gradation. The manifestation of aeolian activity is the weathering and erosion of rocks into sediments, transportation of the weathered debris (mostly sand and dust) by the wind, and deposition of windblown material. Wind-eroded features include small-scale ventifacts (wind-sculptured rocks) and large-scale landforms such as yardangs. Wind depositional features include dunes, drifts, and mantles of windblown sediments. These and other aeolian features are observed on Earth, Mars, and Venus.  相似文献   

15.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. This report introduces a system of cartographic coordinates for asteroids and comets. A topographic reference surface for Mars is recommended. Tables for the rotational elements of the planets and satellites and size and shape of the planets and satellites are not included, since there were no changes to the values. They are available in the previous report (Celest. Mech. Dyn. Astron., 82, 83–110, 2002), a version of which is also available on a web site.  相似文献   

16.
The calculation of theoretical meteor radiants is discussed for comets and asteroids whose orbits pass within, but at present do not necessarily intersect, that of the Earth, in particular from the perspective of developing a suitable method for application to Taurid Complex orbits. The main question addressed here is how to allow for dynamical evolution between epochs when an orbit isnot Earth-intersecting (as at present in most cases for macroscopic bodies) and those when itis (i.e., when meteors can actually be observed). This should be understood in terms of evolution in the past, such that meteoroids released some time ago have evolved differentially from the putative parents, allowing meteors to be detected now. Theoretical radiants for macroscopic Taurid objects are then presented and compared with observations of the nighttime and daytime Taurid meteor showers. These are found to be broadly similar in form, given the sparsity of some of the data, adding weight to the hypothesis that this sub-jovian complex contains kilometre-plus asteroids. A similar conclusion results for the group of objects in similar orbits to (2212) Hephaistos.  相似文献   

17.
Interplanetary Scintillation (IPS) allows observation of the inner heliospheric response to corotating solar structures and coronal mass ejections (CMEs) in scintillation level and velocity. With colleagues at STELab, Nagoya University, Japan, we have developed near-real-time access of STELab IPS data for use in space-weather forecasting. We use a 3D reconstruction technique that produces perspective views from solar corotating plasma and outward-flowing solar wind as observed from Earth by iteratively fitting a kinematic solar wind model to IPS observations. This 3D modeling technique permits reconstruction of the density and velocity structure of CMEs and other interplanetary transients at a relatively coarse resolution: a solar rotational cadence and 10° latitudinal and longitudinal resolution for the corotational model and a one-day cadence and 20° latitudinal and longitudinal heliographic resolution for the time-dependent model. This technique is used to determine solar-wind pressure (“ram” pressure) at Mars. Results are compared with ram-pressure observations derived from Mars Global Surveyor magnetometer data (Crider et al. 2003, J. Geophys. Res. 108(A12), 1461) for the years 1999 through 2004. We identified 47 independent in situ pressure-pulse events above 3.5 nPa in the Mars Global Surveyor data in this time period where sufficient IPS data were available. We detail the large pressure pulse observed at Mars in association with a CME that erupted from the Sun on 27 May 2003, which was a halo CME as viewed from Earth. We also detail the response of a series of West-limb CME events and compare their response observed at Mars about 160° west of the Sun – Earth line by the Mars Global Surveyor with the response derived from the IPS 3D reconstructions.  相似文献   

18.
The relation between gravity anomalies, topography and volcanism can yield important insights about the internal dynamics of planets. From the power spectra of gravity and topography on Earth, Venus and Mars we infer that gravity anomalies have likely predominantly sources below the lithosphere up to about spherical harmonic degree l=30 for Earth, 40 for Venus and 5 for Mars. To interpret the low-degree part of the gravity spectrum in terms of possible sublithospheric density anomalies we derive radial mantle viscosity profiles consistent with mineral physics. For these viscosity profiles we then compute gravity and topography kernels, which indicate how much gravity anomaly and how much topography is caused by a density anomaly at a given depth. With these kernels, we firstly compute an expected gravity-topography ratio. Good agreement with the observed ratio indicates that for Venus, in contrast to Earth and Mars, long-wavelength topography is largely dynamically supported from the sublithospheric mantle. Secondly, we combine an empirical power spectrum of density anomalies inferred from seismic tomography in Earth’s mantle with gravity kernels to model the gravity power spectrum. We find a good match between modeled and observed gravity power spectrum for all three planets, except for 2?l?4 on Venus. Density anomalies in the Venusian mantle for these low degrees thus appear to be very small. We combine gravity kernels and the gravity field to derive radially averaged density anomaly models for the Martian and Venusian mantles. Gravity kernels for l?5 are very small on Venus below ≈800 km depth. Thus our inferences on Venusian mantle density are basically restricted to the upper 800 km. On Mars, gravity anomalies for 2?l?5 may originate from density anomalies anywhere within its mantle. For Mars as for Earth, inferred density anomalies are dominated by l=2 structure, but we cannot infer whether there are features in the lowermost mantle of Mars that correspond to Earth’s Large Low Shear Velocity Provinces (LLSVPs). We find that volcanism on Mars tends to occur primarily in regions above inferred low mantle density, but our model cannot distinguish whether or not there is a Martian analog for the finding that Earth’s Large Igneous Provinces mainly originate above the margins of LLSVPs.  相似文献   

19.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

20.
The author puts forward the proposal in this paper that all the terrestrial planets (Venus, the Earth, and Mars) as well as the Moon deviate from hydrostatic equilibrium to some degree. The Earth's level of deviation of these four celestial bodies is minimum, and that of Mars is maximum. Moreover, the author estimates Martian nonhydrostatic components of the principal moments-of-inertia using five models for the interior of Mars. Comparison with other terrestrial planets shows that setting the range of mean moment-of-inertia ratio, I/MR2, in 0.345 ~ 0.355for Mars is reasonable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号