首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Photometric and spectroscopic observations of the nearby type-IIP supernova 2004dj are presented. The 56Ni mass in the envelope of SN 2004dj was estimated from the light curve to be ≈0.02M. This estimate is confirmed by modeling the Hα luminosity. The Hα emission line exhibits a strong asymmetry characterized by the presence of a blue component in the line with a shift of ?1600 km s?1 at the early nebular phase. A similar asymmetry was found in the Hβ, [O I], and [Ca II] lines. The line asymmetry is interpreted as being the result of asymmetric 56Ni ejecta. The Hα profile and its evolution are reproduced in the model of an asymmetric bipolar 56Ni structure for a spherical hydrogen distribution. The mass of the front 56Ni jet is comparable to that of the central component and twice that of the rear 56Ni jet. We point out that the asymmetric bipolar structure of 56Ni ejecta is also present in SN 1999em, a normal type-IIP supernova.  相似文献   

2.
We have constructed the bolometric light curve of SN 1993J based on UBVRI(JHK) photometric data obtained from various sources and assumingA V = 0 and a distance modulus of 27.6. Effective temperatures and photosphere radius at various times have been obtained from detailed blackbody fits. The bolometric light curve shows two maxima. The short rise time to the second maximum, and the luminosities at the minimum and the second maximum are used to constrain the properties of the progenitor star. The total mass of the hydrogen envelope MH, in the star is found to be ≲ 0.2 M at the time of explosion, and the explosion ejected about 0.05 M of Ni56. Thin hydrogen envelope combined with a sufficient presupernova luminosity suggest that the exploding star was in a binary with a probable period range of 5yr ≤P orb 11yr.  相似文献   

3.
This paper describes the results of optical spectroscopy of SN1987a carried out at Mt John University Observatory on a regular basis since 1987 February 25. Typical spectra are presented in an evolutionary sequence, and velocities of Balmer and selected metallic lines are measured in either emission or absorption. The velocities are interpreted together with the results of photoelectric photometry. The Barnes-Evans relationship has been applied to the photometry to give an angular diameter of the photosphere. The expansion velocity of the photosphere is initially about 3700 km s-1 which is similar to the asymptotic value from weaker absorption lines such as the MgIb line. After 40 days the photosphere appears to expand more slowly and it reaches a maximum size of about 145 A.U. after about 100 days before receding inwards. The photometry and spectroscopy together result in a distance modulus of 18.3 ± 0.2.  相似文献   

4.
Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to investigate the properties of Kepler’s SNR and, in particular, to predict the γ-eay spectrum expected from this SNR. Observations of the nonthermal radio and X-ray emission spectra as well as theoretical constraints for the total supernova (SN) explosion energy E sn are used to constrain the astronomical and particle acceleration parameters of the system. Under the assumption that Kepler’s SN is a type Ia SN we determine for any given explosion energy E sn and source distance d the mass density of the ambient interstellar medium (ISM) from a fit to the observed SNR size and expansion speed. This makes it possible to make predictions for the expected γ-eay flux. Exploring the expected distance range we find that for a typical explosion energy E sn=1051 erg the expected energy flux of TeV γ-rays varies from 2×10−11 to 10−13 erg/(cm2 s) when the distance changes from d=3.4 kpc to 7 kpc. In all cases the γ-eay emission is dominated by π 0-decay γ-rays due to nuclear CRs. Therefore Kepler’s SNR represents a very promising target for instruments like H.E.S.S., CANGAROO and GLAST. A non-detection of γ-rays would mean that the actual source distance is larger than 7 kpc.  相似文献   

5.
We present a theoretical derivation of the Hα line luminosity of the expanding envelope of SN 1987A from the theory of hydrogen recombination lines. A remarkable deviation of our calculated Hα light curve from the observed light curve was found when a constant temperature was assumed. From the deviation we easily derive the temperature evolution. The temperature actually rises after day 500 and this may be explained as follows: as the shell expands, the electron and ion densities rapidly fall, greatly reducing the recombination cooling rate, while heating continues.  相似文献   

6.
Optical spectroscopic data are presented on nova LW Serpentis 1978, obtained during its decline fromV 9.0 to ≃10.2 (compared to a value of ∼ 8.0 at recorded maximum). The spectrum and its evolution compare well with a typical nova, though the principal absorption (∼ −750 km s−l) was very weak in comparison with the diffuse-enhanced absorption (∼ −1300 km s−1). The principal absorption could be identified only in the lines of O I λλ7774, 8446, and in moderate-resolution observations of Hα. The salient features of spectral evolution follow: The near-infrared triplet of Ca n continuously weakened. O I λ8446 was always brighter than O I λ 7774, indicating continued importance of Lyman Β fluorescence. The lines due to [O I], [N II] and N n brightened considerably near the end of our observations (37 days from maximum). The Hα emission line was asymmetric all through with more emission towards the red. Its emission profile showed considerable structure. Based on the individual peaks in the Hα line profile, a kinematical model is proposed for the shell of LW Ser. The model consists of an equatorial ring, and a polar cone on the side away from the earth. The nearer polar cone did not show significant emission of Hα during our observations. The polar axis of the shell is inclined at a small angle (∼ 15‡) to the line of sight.  相似文献   

7.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   

8.
For the case of Tycho’s supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value E sn=1.2×1051 erg of the SN explosion energy this also confirms our previous conclusion that a TeV γ-ray flux of (2–5)×10−13 erg/(cm2 s) is to be expected from Tycho’s SNR. Chandra measurements and the HEGRA upper limit of the TeV γ-ray flux together limit the source distance d to 3.3≤d≤4 kpc.  相似文献   

9.
We present an attempt to analyse the spectra of SN 1987n in NGC 7606, covering a period of 10 days from the time of maximum brightness. The velocities in the rest frame of NGC 7606 and the depths of the spectral lines at maximum light are very close to those of SN 1981b in NGC 4536, slight differences being nevertheless present. A distance to NGC 7606 of 46±11 Mpc for anH 0 value of 50 km s–1 Mpc–1 is inferred from Pskovskii's relation.The analysis carried out within a standard simple model of spectral synthesis involves a high uncertainty in the abundance determinations for the intermediate-mass elements quoted. This uncertainty arises on the one hand from the free choice of the excitation temperature and from the sensitivity to changes in the excitation temperature of the depths of the strongest lines of those elements and, on the other hand, from the impossibility of obtaining within this model an estimate of other abundances — He, O, Na, S — which have NLTE populations.The analysis developed in a new model based (as is the standard one) on Sobolev's approximation but allowing for a more realistic continuum treatment points to an important attenuation effect on the radiation in the lines, due to the continuum scattering, which can also affect abundance determinations.  相似文献   

10.
Nucleosynthetic yields and production rates of helium and heavy elements are derived using new initial mass functions which take into account the recent revisions in O star counts and the stellar models of Maeder (1981a, b) which incorporate the effects of massloss on evolution. The current production rates are significantly higher than the earlier results due to Chiosi & Caimmi (1979) and Chiosi (1979), and a near-uniform birthrate operating over the history of the galactic disc explains the currently observed abundances. However, the yields are incompatibly high, and to obtain agreement it is necessary to assume that stars above a certain mass do not explode but proceed to total collapse. Further confirmation of this idea comes from the consideration of the specific yields and production rates of oxygen, carbon and iron and the constraints imposed by the observational enrichment history in the disc as discussed by Twarog & Wheeler (1982). Substantial amounts of4He and14C, amongst the primary synthesis species, are contributed by the intermediate mass stars in their wind phases. If substantial numbers of them exploded as Type I SN, their contribution to the yields of12C and56Fe would be far in excess of the requirements of galactic nucleosynthesis. Either efficient massloss precludes such catastrophic ends for these stars, or the current stellar models are sufficiently in error to leave room for substantial revisions in the specific yields. The proposed upward revision of the12C (α,γ)16O rate may produce the necessary changes in stellar yields to provide a solution to this problem. Stars that produce most of the metals in the Galaxy are the same ones that contribute most to the observed supernova rate.  相似文献   

11.
We determine abundances from the absorption spectrum of the magnetic Herbig Ae star HD 190073 (V1295 Aql). The observations are primarily from HARPS spectra obtained at a single epoch. We accept arguments that the presence of numerous emission lines does not vitiate a classical abundance analysis, though it likely reduces the achievable accuracy. Most abundances are closely solar, but several elements show departures of a factor of two to three, as an earlier study has also shown. We present quantitative measurements of more than 60 emission lines, peak intensities, equivalent widths, and FWHM's. The latter range from over 200 km s–1(Hα, He D3) down to 10–20 km s–1(forbidden lines). Metallic emission lines have intermediate widths. We eschew modeling, and content ourselves with a presentation of the observations a successful model must explain. Low‐excitation features such as the Na I D‐lines and [O I] appear with He I D3, suggesting proximate regions with widely differing Te and Ne as found in the solar chromosphere. The [O I] and [Ca II] lines show sharp, violet‐shifted features. Additionally, [Fe II] lines appear tobe weakly present in emission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We identify an important set of key areas where an advanced observational Ultraviolet capability would have major impact on studies of cosmology and Galaxy formation in the young Universe. Most of these are associated with the Universe at z < 3–4. We address the issues associated with Dark matter evidence in the local Universe and the impact of the Warm-Hot Intergalactic Medium WHIM on the local Baryon count. The motivations to make ultraviolet (UV) studies of supernovae (SNe) are reviewed and discussed in the light of the results obtained so far by means of IUE and HST observations. It appears that UV studies of SNe can, and do lead to fundamental results not only for our understanding of the SN phenomenon, such as the kinematics and the metallicity of the ejecta, but also for exciting new findings in Cosmology, such as the tantalizing evidence for “dark energy” that seems to pervade the Universe and to dominate its energetics. The need for additional and more detailed UV observations is also considered and discussed.Finally we show the enormous importance of the UV for abundance evolution in the Intergalactic Medium (IGM), and the importance of the He II studies to identify re-ionization epochs, which can only be done in the UV.  相似文献   

13.
We study the nonstationary recombination of hydrogen in the atmosphere of SN 1987A by taking into account ion-molecular processes. The hydrogen excitation due to nonstationary recombination is shown to be enough to explain the observed hydrogen lines in a time interval until day 30 in the absence of additional excitation mechanisms. Thus, the problem of a deficit in the hydrogen excitation that has recently been found in modeling the hydrogen spectrum of SN 1987A at an early photospheric stage by assuming statistical ionization equilibrium is resolved. The mass of the radioactive 56Ni with a spherically symmetric distribution in the outer layers is shown to be close to 10?6 M . Our model predicts the appearance of a blue peak in the Hα profile between days 20 and 30. This peak bears a close similarity to the observed peak known as the Bochum event. The presence of this peak in the model is attributable to nonstationary recombination and to a substantial contribution of hydrogen neutralization involving H? and H2.  相似文献   

14.
We present spectroscopic and photometric observations of the peculiar Type II supernova (SN) 1998A. The light curves and spectra closely resemble those of SN 1987A, suggesting that the SN 1998A progenitor exploded when it was a compact blue supergiant. However, the comparison with SN 1987A also highlights some important differences: SN 1998A is more luminous and the spectra show bluer continua and larger expansion velocities at all epochs. These observational properties indicate that the explosion of SN 1998A is more energetic than SN 1987A and more typical of Type II supernovae. Comparing the observational data with simulations, we deduce that the progenitor of SN 1998A was a massive star  (∼25 M)  with a small pre-supernova radius  (≲6 × 1012 cm)  . The Ba  ii lines, unusually strong in SN 1987A and some faint II-P events, are almost normal in the case of SN 1998A, indicating that the temperature plays a key role in determining their strength.  相似文献   

15.
UBVR c I c observations of SN 2002ap during February, October, and November 2002 at the Crimean Astrophysical Observatory are reported. An examination of our photometric data, along with published data, shows that over a period of about a year from the day the SN 2002ap supernova burst, the light curve passed through three developmental stages: a sharp rise, followed by a stage of rapid exponential decrease, and then a slower fading. Based on the shape of the light curve, this supernova is of type SN I, but according to the variation in its color indices, it more likely belongs to the SN Ic supernovae. In the premaximum stage, the energy distribution from 3000 to 6000 resembles the emission from a star of spectral class F5V. In the second stage of the light curve evolution, when the brightness falls off rapidly, the changes in the color indices are associated with a change in the radiation temperature indicative of rapid cooling of the ejected material. Taking the effective radiation temperature in the premaximum stage to be T eff 6500 K, we estimate the expansion velocity of the quasiphotosphere to be about 9700 km/s.  相似文献   

16.
The new spectroscopic observation of MV Sgr obtained at ESO in 1987 July shows enhanced emission lines of He I λ3889, [SII] λ4068 relative to the observations discussed by Jeffreyet al. (1988). The presence of [SII] λ4068 indicates the presence of planetary-nebulae-like envelope around the star. Although the radial velocity of the absorption lines and Fe II emission lines do agree with the velocity given by Jeffreyet al., the [SII] λ4068 and probably He I emission lines appear to behave differently. Based on observations collected at the European Southern Observatory, La Silla, Chile.  相似文献   

17.
An equation is obtained for the cross section of a metal Weber cylinder for scalar gravitational waves, which are possible within the framework of the field theory of gravitation. It is shown that the signals detected by the Amaldi and Weber antennas during the explosion of supernova SN 1987A can be interpreted as the result of the action of scalar gravitational waves on solid-state detectors. The required energy of the gravitational waves is about 1 Mc2. Together with the observed excess (about 1 %) of gravitational radiation from the binary system containing the pulsar PSR 1913+16, the signals from SN 1987A are the second piece of observational evidence for the actual existence of scalar gravitational waves. The present-day, third-generation, solid-state antennas are capable of detecting scalar waves from events like SN 1987A at a distance up to 5 Mpc. The expected level of the signal from SN 19931 is about 7 mK. An experimental test of the longitudinal nature of scalar waves is possible using interferometric antennas based on free masses. Translated from Astrofizika, Vol. 40, No. 3, pp. 377–389, August, 1997.  相似文献   

18.
The formation of circumstellar Na I and Ca II resonance absorption lines in a type Ia supernova is studied in the case where the supernova explodes in a binary system with a red giant. The model suggests a spherically symmetric wind and takes into account the nonstationary ionization and heating of the wind by X rays from the shock wave and by gamma rays from radioactive 56Ni decay. For wind densities typical of a red giant, the expected optical depth of the wind in Na I lines is shown to be too small (τ < 10?3) for their detection. Under the same conditions, the optical depth of the predicted Ca II 3934 Å absorption line is sufficient for its detection (τ > 0.1). It is concluded that the Na I and Ca II absorption lines detected in SN 2006X could not be formed in the red giant wind and are most likely related to clouds at distances exceeding the dust evaporation radius (r > 1017 cm). An upper limit for the rate of mass loss through a stationary wind with velocity u has been obtained from the absence of Ca II absorption lines in SN 2006X unrelated to the similar Na I components: ? < 10?8 (u/10 km s?1) M yr?1.  相似文献   

19.
The masses and the evolutionary states of the progenitors of core-collapse supernovae are not well constrained by direct observations. Stellar evolution theory generally predicts that massive stars with initial masses less than about 30M should undergo core-collapse when they are cool M-type supergiants. However the only two detections of a SN progenitor before explosion are SN1987A and SN1993J, and neither of these was an M-type supergiant. Attempting to identify the progenitors of supernovae is a difficult task, as precisely predicting the time of explosion of a massive star is impossible for obvious reasons. There are several different types of supernovae which have different spectral and photometric evolution, and how exactly these are related to the evolutionary states of the progenitor stars is not currently known. I will describe a novel project which may allow the direct identification of core-collapse supernovae progenitors on pre-explosion images of resolved, nearby galaxies. This project is now possible with the excellent image archives maintained by several facilities and will be enhanced by the new initiatives to create Virtual Observatories, the earliest of which (astrovirtel) is already producing results. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
The present work studies the hydrodynamic process of thermonuclear explosion of hydrostatic equilibrium, degenerate carbon-oxygen cores withM C=1.40M with different values of central densityϱ c within the interval 2 × 109 <ϱ c < 3 × 1010 g cm−3. The initial temperature distribution has been determined by the preceding thermal stage of explosion. The calculations successively include the kinetics of thermonuclear burning, the kinetics of β-processes, and neutrino energy losses. By considering the neutrino mechanism of heating and carbon ignition we obtained in our numerical hydrodynamic calculations two characteristic versions of the development of an explosion: (a) at 2 × 109 <ϱ c < 9 × 109 g cm−3 there is disruption of the whole star with either complete or partial burning of the carbon and a 1050–1051 erg kinetic energy; and (b) at 9 × 109 <ϱ c < 3 × 1010 g cm−3 the stellar core collapses into a neutron star with partial outburst of the outer envelope with a smaller kinetic energy of 1049–1050 erg. The paper proposes and details a hypothesis (the scenario of supernovae and the formation of neutron stars) on the first version of explosion, corresponding to SNII, and on the second, supplemented by some mechanism of slow energy release into the envelope expelled from the newly formed neutron star, corresponding to SNI. On the basis of the proposed hypothesis a satisfactory agreement with the observed masses and energies of the supernovae envelope, their light curves and spectra, as well as with the data on their chemical composition has been obtained. For this agreement we must assume that type I pre-supernovae are almost bare compact carbon-oxygen stellar cores, and that type II presupernovae are red supergiants. It is most probable that the evolution of type I pre-supernovae occurs in close binaries while the evolution of type II pre-supernovae seems to be very similar to the evolution of a single star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号