首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   1篇
测绘学   6篇
地球物理   3篇
地质学   8篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Soil moisture is one of the important input variables in hydrological and water erosion models. The extraction of information on near surface soil moisture from synthetic aperture radar (SAR) is well established mostly for flat terrain and using low incidence angle single polarisation data. The ENVISAT advanced SAR (ASAR) data available in multiple incidence angles and alternate polarisation modes were investigated in this study for soil moisture estimation in sloping terrain. The test site was Sitla Rao watershed in the Lesser Himalayas of northern India. Empirical models were developed to estimate near surface soil moisture in bare agricultural fields using alternate polarisation ASAR data. Both soil moisture and surface roughness field measurements were performed during the satellite passes. Backscatter from medium incidence angle (IS‐4) and vertical‐vertical (VV) polarisation signal is correlated better with volumetric soil moisture content compared to other incidence angles. The model parameters were further improved, and soil moisture estimation was refined by combining medium incidence angle (IS4) vertical‐horizontal polarisation response as another variable along with VV polarisation response. The effect of slope on the radar backscatter was minimized by incorporating local incidence angles derived from an ASTER DEM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
Sorption of the organic pollutant 4-nitrophenol (4-NP) by pyrolyzed and activated Jordanian oil-shale was studied. Pyrolyzed oil shale was prepared using a fluidized bed reactor at 520 °C in the presence of nitrogen. Physical activation was carried out by treating the pyrolyzed oil shale with CO2 at 830 °C, while chemical activation was achieved by using KOH and ZnCl2 as impregnating agents. Batch kinetics and isotherm studies were conducted to evaluate the sorption process. Effects of contact time, initial sorbate concentration, sorbent concentration, temperature, pH and inorganic salts (NaCl and KCl) on the sorption process by the different sorbents were considered. Chemically activated oil shale, pretreated with ZnCl2, gave the highest uptake of 4-NP. The isotherm experimental data fit reasonably well to Langmuir, Freundlich and Redlich-Paterson models. Three kinetic models, namely the Morris-Weber, Lagergren, and Pseudo-Second-Order model (PSOM), were applied to represent the experimental results for both pyrolyzed and ZnCl2-oil shale sorbents.  相似文献   
3.
4.
Innumerable forest fire spread models exist for taking a decision, but far less focus is on the real causative factors which initiate/ignite fire in an area. It has been observed that the majority of the forest fires in India are initiated due to anthropogenic factors. In this study, we develop a geo-information system approach for management of forest fire in Mudumalai Wildlife Sanctuary, Tamil Nadu, India, with the objective to develop a forest fire likelihood model, integrating GIS and knowledge-based approach for predicting fire-sensitive initiation areas considering major causative and anti-causative factors. Amongst the various causative factors investigated, it was found that wildlife-dependent factor (antler collection and poaching) contributed significantly to fire occurrence followed by management-dependent factors (uncontrolled tourism and grazing), with much less influence of demographic factors. Similarly, anti-causative factor (stationing of anti-poaching/ fire camps) was considered as quite significant.

The likelihood model so developed, envisaging various factors and flammability, accounted for different scenarios as a result of pair-wise comparison on an ordinal scale in a knowledge matrix. The inferential statistics computed indicated the robustness of the model and its insensitivity to moderate changes. It makes it possible for this forest fire likelihood model to predict and prevent a forest fire in an effective and scientific manner because it can assume forest fire likelihood in real time and present in proper time.  相似文献   

5.
The uncertainty in assessing the numerous atmospheric pollutants transported via wind from arid and semi-arid regions is affecting the glacial ecosystem. In our study area due to the complexity of the system, a prominent seasonal difference noticed among major ions(Ca~(2+), Mg~(2+), SO_4~(2-), and NO_3~-). There is a need for understanding the ions cycling as a whole and the directionality of the feedback loops in the system. Therefore, we provide an appraisal of our current hypothesis for seasonal difference in major ion concentration from snow samples for two corresponding years(2013 and 2015) at Dokriani Glacier. A systematic study of chemical compositionsin the shallow snow pit from Dokriani Glacier was undertaken for the pre-monsoon season to understand the cycling of major ions from atmosphere to solute acquisition process. The intimating connections of ions cycling in snow and its temporal behavior was observed and analyzed through various statistical tests. Among major ions, the SO_4~(2-)has the highest concentration among anions on an average considered as 14.21% in 2013 and 29.46% in 2015. On the other side Ca~(2+) is the dominant cation contributing 28.22% in 2013 and 15.3% in 2015 on average. The average ratio of Na+/Cl-was higher in 2013 whereas lower in 2015. The backward trajectory analysis suggests the possible sources of the ions transported from Central Asia through the Western Disturbance(WD) as a prominent source of winter precipitation mainly in the Central Himalaya. Ionicconcentration of Ca~(2+) in cations was highly dominated while in anion SO_4~(2-)played the major role. Factor analysis and correlation matrix suggested that, the precipitation chemistry is mostly influenced by anthropogenic, crustal, and sea salt sources over the studied region. The elemental cycling through ocean, atmosphere and biosphere opens up new ways to understand the geochemical processes operating at the glacierized catchments of the Himalaya. Moreover, increasing the field-based studies in the coming decades would also have the certain advantage in overcoming the conceptual and computational geochemical modelling difficulties.  相似文献   
6.
Batch kinetics and isotherm studies were carried out to evaluate the sorption of phenol by pyrolyzed and activated Jordanian oil-shale. The effects of contact time, initial sorbate concentration, sorbent concentration, temperature, pH and inorganic salts (NaCl and KCl), on the adsorption process by different sorbents were considered. Chemically activated oil shale, pretreated with ZnCl 2, gave the highest uptake of phenol. The isotherm experimental data fit well to Freundlich and Redlich-Paterson models and to a less extent to the Langmuir model. The increase in the initial sorbate concentration resulted in an increase in the uptake. Three kinetics models, namely the Morris-Weber model, the Lagergren model, and the pseudo-second-order model (PSOM), were applied to represent the experimental results for pyrolyzed and ZnCl 2-oil shale sorbents. Pyrolyzed oil shale was prepared using a fluidized bed reactor at 520 °C in the presence of nitrogen. Physical activation was carried out by treating the resulted pyrolyzed oil shale with CO 2 at 830 °C, while chemical activation of oil shale was carried out using KOH and ZnCl 2 as impregnating agents.  相似文献   
7.
Water Resources - Groundwater NO3 contamination (GNC) threatens the drinkability of water in many countries worldwide. It could cause serious health problems and sometimes lead to death. This paper...  相似文献   
8.
The Central Indian Tectonic Zone (CITZ) is a Proterozoic suture along which the Northern and Southern Indian Blocks are inferred to have amalgamated forming the Greater Indian Landmass. In this study, we use the metamorphic and geochronological evolution of the Gangpur Schist Belt (GSB) and neighbouring crustal units to constrain crustal accretion processes associated with the amalgamation of the Northern and Southern Indian Blocks. The GSB sandwiched between the Bonai Granite pluton of the Singhbhum craton and granite gneisses of the Chhotanagpur Gneiss Complex (CGC) links the CITZ and the North Singhbhum Mobile Belt. New zircon age data constrain the emplacement of the Bonai Granite at 3,370 ± 10 Ma, while the magmatic protoliths of the Chhotanagpur gneisses were emplaced at c. 1.65 Ga. The sediments in the southern part of the Gangpur basin were derived from the Singhbhum craton, whereas those in the northern part were derived dominantly from the CGC. Sedimentation is estimated to have taken place between c. 1.65 and c. 1.45 Ga. The Upper Bonai/Darjing Group rocks of the basin underwent major metamorphic episodes at c. 1.56 and c. 1.45 Ga, while the Gangpur Group of rocks were metamorphosed at c. 1.45 and c. 0.97 Ga. Based on thermobarometric studies and zircon–monazite geochronology, we infer that the geological history of the GSB is similar to that of the North Singhbhum Mobile Belt with the Upper Bonai/Darjing and the Gangpur Groups being the westward extensions of the southern and northern domains of the North Singhbhum Mobile Belt respectively. We propose a three‐stage model of crustal accretion across the Singhbhum craton—GSB/North Singhbhum Mobile Belt—CGC contact. The magmatic protoliths of the Chhotanagpur Gneisses were emplaced at c. 1.65 Ga in an arc setting. The earliest accretion event at c. 1.56 Ga involved northward subduction and amalgamation of the Upper Bonai Group with the Singhbhum craton followed by accretion of the Gangpur Group with the Singhbhum craton–Upper Bonai Group composite at c. 1.45 Ga. Finally, continent–continent collision at c. 0.96 Ga led to the accretion of the CGC with the Singhbhum craton–Upper Bonai Group–Gangpur Group crustal units, synchronous with emplacement of pegmatitic granites. The geological events recorded in the GSB and other units of the CITZ only partially overlap with those in the Trans North China Orogen and the Capricorn Orogen of Western Australia, indicating that these suture zones are not correlatable.  相似文献   
9.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   
10.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号