首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   16篇
  国内免费   3篇
测绘学   5篇
大气科学   24篇
地球物理   48篇
地质学   42篇
海洋学   12篇
天文学   25篇
综合类   1篇
自然地理   16篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   9篇
  2016年   7篇
  2015年   1篇
  2014年   11篇
  2013年   14篇
  2012年   11篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   4篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有173条查询结果,搜索用时 31 毫秒
141.
A simple algorithm for generating streamflow networks for macroscale hydrological models (MHMs) from digital elevation models (DEMs) is presented. Typically these hydrological models are grid based, with the simulated runoff produced within each cell routed through a stream network which connects the centers of cells in the direction of the major streams. Construction of such stream networks is a time consuming task, which has generally been done by hand with the aid of maps. Results indicate that the algorithm works satisfactorily in areas of both high and low relief, and for a wide range of model cell resolutions, although some manual adjustments may be necessary. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
142.
Natural tidal channels often need deepening for navigation purposes (to facilitate larger vessels). Deepening often leads to tidal amplification, salinity intrusion, and increasing sand and mud import. These effects can be modelled and studied by using detailed 3D models. Reliable simplified models for a first quick evaluation are however lacking. This paper presents a simplified model for sand transport in prismatic and converging tidal channels. The simplified model is a local model neglecting horizontal sand transport gradients. The latter can be included by coupling (as post-processing) the simplified model to a 2DH or 3D flow model. Basic sand transport processes in stratified tidal flow are studied based on the typical example of the tidal Rotterdam Waterway in The Netherlands. The objective is to gain quantitative understanding of the effects of channel deepening on tidal penetration, salinity intrusion, tidal asymmetry, residual density-driven flow, and the net tide-integrated sand transport. We firstly study the most relevant tidal parameters at the mouth and along the channel with simple linear tidal models and numerical 2DH and 3D tidal models. We then present a simplified model describing the transport of sand (TSAND) in tidal channels. The TSAND model can be used to compute the variation of the depth-integrated suspended sand transport and total sand transport (incl. bed-load transport) over the tidal cycle. The model can either be used in stand-alone mode or with computed near-bed velocities from a 3D hydrodynamic model as input data.  相似文献   
143.
The tectonics of the Virgin Islands Basin are controlled by the plate boundary between the Puerto Rico‐Virgin Islands Microplate and the stable part of the Caribbean Plate. Several contradicting theories about the formation and development of this basin have previously been proposed. As part of the Danish Galathea 3 expedition, extensive marine geological investigations of the basin were carried out in March 2007 including sediment coring and acquisition of multi‐beam and two‐dimensional seismic data. This paper represents a summary of the key observations from the multi‐beam and the seismic data set. The interpretation of these observations leads to the proposition of a tectonic model for the Virgin Islands Basin. The model consists of N–S to NW–SE directed extension combined with E‐W trending sinistral strike‐slip and the new structural evidence from the Virgin Islands Basin is entirely consistent with the most recently published GPS data.  相似文献   
144.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
145.
Various approaches exist to relate saturated hydraulic conductivity (K s) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain-size distribution. This study compares two data-driven modelling methods??multiple linear regression and artificial neural networks??that use the entire grain-size distribution data as input for K s prediction. Besides the predictive capacity of the methods, the uncertainty associated with the model predictions is also evaluated, since such information is important for stochastic groundwater flow and contaminant transport modelling. Artificial neural networks (ANNs) are combined with a generalised likelihood uncertainty estimation (GLUE) approach to predict K s from grain-size data. The resulting GLUE-ANN hydraulic conductivity predictions and associated uncertainty estimates are compared with those obtained from the multiple linear regression models by a leave-one-out cross-validation. The GLUE-ANN ensemble prediction proved to be slightly better than multiple linear regression. The prediction uncertainty, however, was reduced by half an order of magnitude on average, and decreased at most by an order of magnitude. This demonstrates that the proposed method outperforms classical data-driven modelling techniques. Moreover, a comparison with methods from the literature demonstrates the importance of site-specific calibration. The data set used for this purpose originates mainly from unconsolidated sandy sediments of the Neogene aquifer, northern Belgium. The proposed predictive models are developed for 173 grain-size K s-pairs. Finally, an application with the optimised models is presented for a borehole lacking K s data.  相似文献   
146.
ABSTRACT

Flood early warning systems play a more substantial role in risk mitigation than ever before. Hydrological forecasts, which are an essential part of these systems, are used to trigger action against floods around the world. This research presents an evaluation framework, where the skills of the Global Flood Awareness System (GloFAS) are assessed in Peru for the years 2009–2015. Simulated GloFAS discharges are compared against observed ones for 10 river gauges. Forecasts skills are assessed from two perspectives: (i) by calculating verification scores at every river section against simulated discharges and (ii) by comparing the flood signals against reported events. On average, river sections with higher discharges and larger upstream areas perform better. Raw forecasts provide correct flood signals for 82% of the reported floods, but exhibit low verification scores. Post-processing of raw forecasts improves most verification scores, but reduces the percentage of the correctly forecasted reported events to 65%.  相似文献   
147.
Mobile devices are becoming very popular in recent years, and large amounts of trajectory data are generated by these devices. Trajectories left behind cars, humans, birds or other objects are a new kind of data which can be very useful in the decision making process in several application domains. These data, however, are normally available as sample points, and therefore have very little or no semantics. The analysis and knowledge extraction from trajectory sample points is very difficult from the user's point of view, and there is an emerging need for new data models, manipulation techniques, and tools to extract meaningful patterns from these data. In this paper we propose a new methodology for knowledge discovery from trajectories. We propose through a semantic trajectory data mining query language several functionalities to select, preprocess, and transform trajectory sample points into semantic trajectories at higher abstraction levels, in order to allow the user to extract meaningful, understandable, and useful patterns from trajectories. We claim that meaningful patterns can only be extracted from trajectories if the background geographical information is considered. Therefore we build the proposed methodology considering both moving object data and geographic information. The proposed language has been implemented in a toolkit in order to provide a first software prototype for trajectory knowledge discovery.  相似文献   
148.
Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When speed limitations in these sample points are also known, space–time prisms (also called beads) (Pfoser and Jensen 1999 Pfoser, D. and Jensen, C.S. 1999. “Capturing the uncertainty of moving-object representations”. In Advances in spatial databases (SSD’99), Hong Kong, China, July 20–23, 1999, Vol. 1651, 111132. Lecture notes in Computer Science.  [Google Scholar], Egenhofer 2003 Egenhofer, M. 2003. “Approximation of geopatial lifelines”. In SpadaGIS, workshop on spatial data and geographic information systsems, 4SpaDaGIS–Workshop on Spatial Data and Geographic Information Systems, Milano, Italy, March 2003. University of Genova.  [Google Scholar], Miller 2005 Miller, H. 2005. A measurement theory for time geography. Geographical Analysis, 37(1): 1745. [Crossref], [Web of Science ®] [Google Scholar]) can be used to model the uncertainty about an object's location in between sample points. In this setting, a query of particular interest that has been studied in the literature of geographic information systems (GIS) is the alibi query. This boolean query asks whether two moving objects could have physically met. This adds up to deciding whether the chains of space–time prisms (also called necklaces of beads) of these objects intersect. This problem can be reduced to deciding whether two space–time prisms intersect.

The alibi query can be seen as a constraint database query. In the constraint database model, spatial and spatiotemporal data are stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with polynomial constraints is the standard first-order query language for constraint databases and the alibi query can be expressed in it. The evaluation of the alibi query in the constraint database model relies on the elimination of a block of three exªistential quantifiers. Implementations of general purpose elimination algorithms, such as those provided by QEPCAD, Redlog, and Mathematica, are, for practical purposes, too slow in answering the alibi query for two specific space–time prisms. These software packages completely fail to answer the alibi query in the parametric case (i.e., when it is formulated in terms of parameters representing the sample points and speed constraints).

The main contribution of this article is an analytical solution to the parametric alibi query, which can be used to answer the alibi query on two specific space–time prisms in constant time (a matter of milliseconds in our implementation). It solves the alibi query for chains of space–time prisms in time proportional to the sum of the lengths of the chains. To back this claim up, we implemented our method in Mathematica alongside the traditional quantifier elimination method. The solutions we propose are based on the geometric argumentation and they illustrate the fact that some practical problems require creative solutions, where at least in theory, existing systems could provide a solution.  相似文献   
149.
Space-time prisms capture all possible locations of a moving person or object between two known locations and times given the maximum travel velocities in the environment. These known locations or ‘anchor points’ can represent observed locations or mandatory locations because of scheduling constraints. The classic space-time prism as well as more recent analytical and computational versions in planar space and networks assume that these anchor points are perfectly known or fixed. In reality, observations of anchor points can have error, or the scheduling constraints may have some degree of pliability. This article generalizes the concept of anchor points to anchor regions: these are bounded, possibly disconnected, subsets of space-time containing all possible locations for the anchor points, with each location labelled with an anchor probability. We develop two algorithms for calculating network-based space-time prisms based on these probabilistic anchor regions. The first algorithm calculates the envelope of all space-time prisms having an anchor point within a particular anchor region. The second algorithm calculates, for any space-time point, the probability that a space-time prism with given anchor regions contains that particular point. Both algorithms are implemented in Mathematica to visualize travel possibilities in case the anchor points of a space-time prism are uncertain. We also discuss the complexity of the procedures, their use in analysing uncertainty or flexibility in network-based prisms and future research directions.  相似文献   
150.
The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axi-symmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field. The flux rope is in equilibrium due to an image current below the photosphere. An emerging flux triggering mechanism is used to make this equilibrium system unstable. When the magnetic flux emerges within the filament below the flux rope, this results in a catastrophic behavior similar to previous models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs. We have done a parametric study of the emerging flux rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号