首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   3篇
  国内免费   3篇
测绘学   30篇
大气科学   25篇
地球物理   38篇
地质学   69篇
海洋学   8篇
天文学   33篇
自然地理   3篇
  2023年   2篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   15篇
  2016年   13篇
  2015年   2篇
  2014年   8篇
  2013年   12篇
  2012年   5篇
  2011年   9篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   12篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1968年   1篇
  1966年   2篇
  1963年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有206条查询结果,搜索用时 125 毫秒
51.
Structures of four generations are decipherable both in the pre-Delhi rocks of central Rajasthan, and in the Delhi rocks of Khetri in northeastern Rajasthan and around Todgarh in central Rajasthan. There is a remarkable identity in the later phases of the deformational history of the two groups, with gravity-induced structures followed by conjugate folds due to longitudinal shortening (N-S in northeastern Rajasthan and NE-SW in central Rajasthan). The earlier stages of the structural history of the two groups are, however, significantly different. The E-W-trending reclined folds of the first generation in the pre-Delhi rocks are absent in the Delhi rocks throughout Rajasthan. The NNE- to NE-trending folds of the second generation in the pre-Delhi groups are upright, whereas these structures in the Delhi rocks are of two phases—recumbent folds, followed by coaxial upright folds. The folds of the first and the second phases in the Delhi rocks plunge gently NE or SW where they are not affected by subsequent deformations. But the NE-trending folds in the pre-Delhi rocks show an extreme variation in axial plunge from horizontal to vertical, even where they are unaffected by later movements. Evidence has been adduced to suggest that these differences in the earlier phases of the structural evolution of the two groups are due to an angular unconformity between the Delhi and the pre-Delhi rocks.  相似文献   
52.
Summary Mineral chemistry and petrological data of chromites from chromitite bands in the N–S trending schist belt of Nuggihalli (southern Karnataka, India), belonging to the Dharwar craton of South India, are presented in this paper. Crystal chemical data indicate a komatiitic affinity of the chromitite. P–T calculations of the chromite-hosting peridotites yielded a pressure range of 13 to 28 kbar and temperatures ranging from 775 to 1080 °C; the oxygen fugacity (log fO2) varies from +0.5 to +1.6 above the QFM buffer. The P, T and fO2 data indicate that Nuggihalli chromitites crystallized in an environment akin to the upper mantle. The studied samples also show partial resetting; the lower temperatures ranging from 515 to 680 °C are ascribed to subsequent metamorphism of the area.  相似文献   
53.
It has been the belief among Earth scientists that the Peninsular Shield is aseismic, as the region attained stability long ago. However, the earthquake at Koyna (10 December 1967), Bhadrachalam (13 April 1969), Broach (23 March 1970), Hyderabad (30 June 1983), Khillari (30 September 1993), Jabalpur (22 May 1997), Gujarat (26 January 2001), and additional ones of smaller magnitudes, altered this concept. This area has experienced many widely distributed shallow earthquakes, some of them having large magnitudes. It is now widely accepted that seismic activity still continues with moderate events. Therefore, a need has arisen to take into consideration recent seismological data to assess the future seismic status of Peninsular India. Earthquake generation model has been studied to develop the statistical relations with surface wave magnitude (M S ≥ 4.5). Five seismogenic sources showing clustering of earthquakes and including at least three main shocks of magnitude 4.5 ≤ M S ≤ 6.5 giving two repeat times, have been identified. It is mainly based on the so-called “regional time-predictable model”. For the considered region it is observed that the time interval between two consecutive main shocks depends on the preceding main shock magnitude (M p ) not on the following main shocks magnitude M f suggesting the validity of time predictable model in the region.  相似文献   
54.
In laboratory experiments the interactions of ammonia with ice crystals were studied within the temperature range between 0 and −20°C. In a first series of experiments dendritic ice crystals were grown from water vapor in presence of ammonia gas in various concentrations between 4 and 400 ppbv. In a second series of experiments pure ice crystals were exposed to a humidified ammonia–air mixture inside a horizontal flow tube. The influence of temperature, ammonia gas concentration (0.6, 1.5, and 10 ppmv), exposure time, and the presence of impurities such as sulfate on the ammonia uptake by the ice surface was investigated by determining the ammonium content in the melt water of the ice crystals by ion chromatography. During the growth of ice crystals significant amounts of ammonia (around 200 μg/l) were taken up even at small gas concentrations. In contrast, even at high gas concentrations the uptake of ammonia by non-growing ice crystals was lower by approximately one order of magnitude. The presence of sulfate on the ice surface affected an enhanced uptake of ammonia by a factor of 5–10. A model is presented which describes the uptake of ammonia by ice considering the chemical processes occurring in the ice surface layer and simultaneous diffusion of ammonia into bulk ice. Even the increased uptake of ammonia by growing ice is rather small compared to the uptake by water droplets; thus, the major process for scavenging of ammonia from the atmosphere via the ice phase might not be the direct uptake by ice crystals but the riming involving super-cooled droplets containing ammonia.  相似文献   
55.
56.
57.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
58.
59.
In this paper, an attempt has been made to derive the tasselled cap coefficients manually following the rigorous mathematical computations for the three-band Disaster Monitoring Constellation (DMC) data. Considering ten DMC images of same season, it has been found that the first two transformation components, namely brightness and greenness can capture on an average 94.44 % of the three band variance of the DMC image. The coefficients of TC transformation equations for DMC image were derived considering the above mentioned ten DMC images. For the application purpose the TC images were applied to classify the forest types of the New Forest area of UK. For the comparison purpose, the tasselled cap images generated after the automated transformation of the Landsat 7 ETM+ image of the same area were considered to classify the forest types. A series of statistical intra-image and inter-image comparisons were conducted to find out the intra and inter-relationships between the brightness and greenness images obtained from the two different sensors. Finally, the accuracies of both the classified images were assessed based on the field collected GPS data. It was estimated that the overall accuracies of the classified DMC and ETM+ images were 77.44 % and 81.43 % respectively.  相似文献   
60.
The coverage of satellite derived winds over the Indian region including Indian Ocean has improved by the operation of India’s first dedicated satellite for meteorology, KALPANA-1 since 12 September 2002. Atmospheric motion vectors (AMVs) are being derived at the India Meteorological Department (IMD), New Delhi on a routine operational basis. The AMV is recognized as an important source of information for numerical weather prediction (NWP) and is particularly suited for tracking the low and middle level clouds mainly because of the good contrast in albedo between target and background, whereas the upper level moisture pattern can be better tracked by water vapor winds (WVW) using water vapor (WV) channel (5.7–7.1 μm). The WVWs proved to be a very useful wind product for predicting the future track position of cyclones, well marked low pressure areas or heavy rainfall warnings in advance and so, often these types of weather systems are steered by the upper level winds. In the present study, the quantitative as well as qualitative analyses of KALPANA-1 WVW have been carried out. The primary change introduced is making use of first guess (FG) forecast fields obtained from National Center for Environmental Prediction (NCEP) and Global Forecast System (GFS), at a resolution of 1° × 1° with T-382/L64 instead of forecasts of operational limited area model (LAM) of IMD. The overall results showed a consistent improvement after using improved FG wind fields from NCEP instead of LAM with a significantly increasing number of good qualities of KALPANA-1 derived WVWs. The quantitative error analysis has also been carried out for the validation of WVWs using collocated radiosonde observations for the period from May 2008 to December 2009 and the available mid-upper level winds derived from METEOSAT-7 data for the period from October to December 2008. The analysis shows that after modification, the RMSE and bias of KALPANA-1 WVWs have reduced considerably. Further, to assess the impact of these winds, a high resolution mesoscale model WRF 3DVAR system is used in the present study for the analysis of tropical cyclone ‘Sidr’. The results show that the wind assimilation experiments (analysis at 200 hPa) using upper level KALPANA-1 WVW have great potential for improving the NWP analysis. The impact of additional wind data in the model is found to be positive and beneficial.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号