首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   11篇
  国内免费   3篇
测绘学   14篇
大气科学   12篇
地球物理   48篇
地质学   135篇
海洋学   6篇
天文学   34篇
综合类   4篇
自然地理   4篇
  2022年   5篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   17篇
  2017年   17篇
  2016年   24篇
  2015年   8篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   15篇
  2010年   12篇
  2009年   24篇
  2008年   19篇
  2007年   12篇
  2006年   11篇
  2005年   6篇
  2004年   9篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有257条查询结果,搜索用时 296 毫秒
131.
The magmatic heritage of carbonatites can be identified on the basis of a combination of geological criteria such as, their mode of occurrence, the nature of associated igneous rocks, the presence of minerals of igneous origin, fenitization, characteristic trace element contents and isotopic composition. Late Proterozoic Samalpatti carbonatites were studied in view of these criteria, and were found to contain metamorphic minerals that normally form under thermal metamorphic conditions and which have unusual chemical compositions. A combination of criteria points clearly to a magmatic origin for these carbonatites. Field relations indicate that the dominant modes of intrusion of carbonatite into the encompassing pyroxenites and syenites include small dykes, veins, or lenses. The igneous nature of these carbonatites has been described elsewhere and chemically they are classified as calico-carbonatites. Currently, very little is known about the metamorphic textures and mineralogy observed in the Samalpatti carbonatites. In this study, several metamorphic minerals are reported including diopside, grossularite, vesuvianite, K-feldspar and wollastonite, and a hornfelsic texture is described. These mineral phases and texture characterize thermal metamorphism under low pressure and high temperature (LP-HT) metamorphic conditions (650°_750°C) or metasomatism aided by hot-fluid advection. The metamorphic nature of minerals reported is also confirmed by electron microprobe study. The Samalpatti carbonatite samples show much lower values of characteristic trace elements (P, Sr, Ba, Zr, Nb, Th, Y and REEs) than average concentrations for magmatic carbonatite. Stable isotopic (d13C and d18O) compositions of Samalpatti carbonatites do not fall in the primary igneous carbonatite (PIC) domain. The petrological and chemical signatures of these carbonatites suggest metasomatism in conjunction with fluid advection. Such a metasomatic process may drastically change the chemistry of the rocks in addition to enrichment of heavier stable isotopes. During this metasomatic process, characteristic elements would be dissolved in the high d18O fluid, and together with Rayleigh fractionation would contribute to enhanced concentrations of 13C and 18O in Samalpatti carbonatites.  相似文献   
132.
In the Kakkaponnu area within the Achankovil Shear Zone (ACSZ), southern India, an undeformed ultramafic body occurs within intensely deformed granulite facies metamorphic rocks of Pan-African age. The Kakkaponnu ultramafic body is composed of spinel-dunite, phlogopite-dunite, glimmerite, graphite-spinel-glimmerite, and phlogopite-graphite-spinellite. The spinel-dunite is a fine- to medium-grained rock composed mainly of olivine and aluminous spinel and is characterized by relatively high MgO (50.39–50.90 wt.%), (Mg/ (Mg+Fe) = 0.95), Al2O3 (7.8–8.98 wt.%), and low Ni (10–14 ppm). The phlogopite-dunite comprises serpentinized olivine, phlogopite and subordinate amounts of dolomite and is high in MgO (36.5 wt.%), Mg# [(Mg/(Mg+Fe) = 0.97], and K2O (%%5.5 wt.%). Olivine in the spinel-dunite is marked by unusually high MgO (Mg# = 0.96) and extremely low NiO (<0.14 wt.%). Spinels in all rock variants are highly aluminous with low Cr# [Cr/(Al+Cr)] ratio (<0.01). Magnesian ilmenite [Mg# = 59], rutile, zirconolite and baddeleyite are main accessory phases. No significant compositional variation is noted between large grains and small inclusions for all minerals. Abundant graphite, magnesite, melt and ubiquitous CO2 fluid inclusions are identified in the olivine and spinel grains. The data imply that the Kakkaponnu ultramafic body was formed by progressive crystallization of highly potassic CO2-rich melts injected into lower crustal levels. K-Ar ages of 470.5±9.3 and 464.5±9.2 Ma are obtained for phlogopite separates from glimmerite and phlogopite-dunite respectively. These ages are comparable to the phlogopite K-Ar ages reported from lithospheric shear zones in southern Madagascar, which was once conjugated to the Southern Peninsular India prior to the Gondwana breakup. This implies widespread highly potassic CO2-rich fluid/melt influx along shear zones in this part of East Gondwana continent.  相似文献   
133.
Numerous early Cretaceous mafic and alkaline dykes, mostly trending in N-S direction, are emplaced in the Archaean gneissic complex of the Shillong plateau, northeastern India. These dykes are spatially associated with the N-S trending deep-seated Nongchram fault and well exposed around the Swangkre-Rongmil region. The petrological and geochemical characteristics of mafic dykes from this area are presented. These mafic dykes show very sharp contact with the host rocks and do not show any signature of assimilation with them. Petrographically these mafic dykes vary from fine-grained basalt (samples from the dyke margin) to medium-grained dolerite (samples from the middle of the dyke) having very similar chemical compositions, which may be classified as basaltic-andesite/andesite. The geochemical characteristics of these mafic dykes suggest that these are genetically related to each other and probably derived from the same parental magma. Although, the high-field strength element (+rare-earth elements) compositions disallow the possibility of any crustal involvement in the genesis of these rocks, but Nb/La, La/Ta, and Ba/Ta ratios, and similarities of geochemical characteristics of present samples with the Elan Bank basalts and Rajmahal (Group II) mafic dyke samples, suggest minor contamination by assimilation with a small amount of upper crustal material. Chemistry, particularly REE, hints at an alkaline basaltic nature of melt. Trace element modelling suggests that the melt responsible for these mafic dykes had undergone extreme differentiation (∼ 50%) before its emplacement. The basaltic-andesite nature of these rocks may be attributed to this differentiation. Chemistry of these rocks also indicates ∼ 10–15% melting of the mantle source. The mafic dyke samples of the present investigation show very close geochemical similarities with the mafic rocks derived from the Kerguelen mantle plume. Perhaps the Swangkre-Rongmil mafic dykes are also derived from the Kerguelen mantle plume.  相似文献   
134.
135.
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (PT) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde PT path with peak PT conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were  800 and  900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea.  相似文献   
136.
Decades of runoff from precious-metal mining operations in the Lake Coeur d’Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d’Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment–water interface, together with decreasing terminal electron acceptor concentrations with depth, including the development of anoxic conditions within about a centimeter below the lake bottom. This effort provides insights on important biogeochemical processes affecting the cycling of metals in Lake Coeur d’Alene and similar metal-impacted lacustrine environments.  相似文献   
137.
We present new U–Pb SHRIMP zircon geochronological data for basement rocks in Bangladesh, and discuss the relationship with the formation of the Columbia supercontinent. Euhedral zircons from a diorite sample yield a concordia age of 1730 ± 11 Ma, which is interpreted as the crystallization age. The Palaeoproterozoic age of the examined basement rock and the common occurrences of similar 1.7-Ga geologic units in the Central Indian Tectonic Zone and Meghalaya-Shillong Plateau in Indian Shield suggest their apparent continuation. This, together with the occurrence of similar 1.7-Ga geologic units in the Albany-Fraser belt in Australia and East Antarctica, are used to suggest that the basement rocks in Bangladesh formed towards the final stages of the assembly of the Columbia supercontinent.  相似文献   
138.
139.
140.
Palaeoproterozoic mafic dike swarms of different ages are well exposed in the eastern Dharwar craton of India. Available U-Pb mineral ages on these dikes indicate four discrete episodes, viz. (1) ~2.37 Ga Bangalore swarm, (2) ~2.21 Ga Kunigal swarm, (3) ~2.18 Ga Mahbubnagar swarm, and (4) ~1.89 Ga Bastar-Dharwar swarm. These are mostly sub-alkaline tholeiitic suites, with ~1.89 Ga samples having a slightly higher concentration of high-field strength elements than other swarms with a similar MgO contents. Mg number (Mg#) in the four swarms suggest that the two older swarms were derived from primary mantle melts, whereas the two younger swarms were derived from slightly evolved mantle melt. Trace element petrogenetic models suggest that magmas of the ~2.37 Ga swarm were generated within the spinel stability field by ~15–20% melting of a depleted mantle source, whereas magmas of the other three swarms may have been generated within the garnet stability field with percentage of melting lowering from the ~2.21 Ga swarm (~25%), ~2.18 Ga swarm (~15–20%), to ~1.89 Ga swarm (~10–12%). These observations indicate that the melting depth increased with time for mafic dike magmas. Large igneous province (LIP) records of the eastern Dharwar craton are compared to those of similar mafic events observed from other shield areas. The Dharwar and the North Atlantic cratons were probably together at ~2.37 Ga, although such an episode is not found in any other craton. The ~2.21 Ga mafic magmatic event is reported from the Dharwar, Superior, North Atlantic, and Slave cratons, suggesting the presence of a supercontinent, ‘Superia’. It is difficult to find any match for the ~2.18 Ga mafic dikes of the eastern Dharwar craton, except in the Superior Province. The ~1.88–1.90 Ga mafic magmatic event is reported from many different blocks, and therefore may not be very useful for supercontinent reconstructions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号