首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   88篇
  国内免费   32篇
测绘学   54篇
大气科学   208篇
地球物理   460篇
地质学   770篇
海洋学   191篇
天文学   363篇
综合类   5篇
自然地理   201篇
  2023年   8篇
  2022年   11篇
  2021年   36篇
  2020年   45篇
  2019年   29篇
  2018年   60篇
  2017年   54篇
  2016年   82篇
  2015年   52篇
  2014年   79篇
  2013年   144篇
  2012年   69篇
  2011年   120篇
  2010年   99篇
  2009年   125篇
  2008年   112篇
  2007年   107篇
  2006年   121篇
  2005年   80篇
  2004年   85篇
  2003年   56篇
  2002年   61篇
  2001年   53篇
  2000年   44篇
  1999年   42篇
  1998年   34篇
  1997年   26篇
  1996年   25篇
  1995年   23篇
  1994年   18篇
  1993年   21篇
  1992年   10篇
  1991年   23篇
  1990年   20篇
  1989年   20篇
  1988年   12篇
  1987年   26篇
  1986年   22篇
  1985年   20篇
  1984年   18篇
  1983年   28篇
  1982年   18篇
  1981年   22篇
  1980年   17篇
  1979年   12篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1975年   9篇
  1973年   7篇
排序方式: 共有2252条查询结果,搜索用时 234 毫秒
71.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   
72.
Large magnitude earthquakes generated at source–site distances exceeding 100km are typified by low‐frequency (long‐period) seismic waves. Such induced ground shaking can be disproportionately destructive due to its high displacement, and possibly high velocity, shaking characteristics. Distant earthquakes represent a potentially significant safety hazard in certain low and moderate seismic regions where seismic activity is governed by major distant sources as opposed to nearby (regional) background sources. Examples are parts of the Indian sub‐continent, Eastern China and Indo‐China. The majority of ground motion attenuation relationships currently available for applications in active seismic regions may not be suitable for handling long‐distance attenuation, since the significance of distant earthquakes is mainly confined to certain low to moderate seismicity regions. Thus, the effects of distant earthquakes are often not accurately represented by conventional empirical models which were typically developed from curve‐fitting earthquake strong‐motion data from active seismic regions. Numerous well‐known existing attenuation relationships are evaluated in this paper, to highlight their limitations in long‐distance applications. In contrast, basic seismological parameters such as the Quality factor (Q‐factor) could provide a far more accurate representation for the distant attenuation behaviour of a region, but such information is seldom used by engineers in any direct manner. The aim of this paper is to develop a set of relationships that provide a convenient link between the seismological Q‐factor (amongst other factors) and response spectrum attenuation. The use of Q as an input parameter to the proposed model enables valuable local seismological information to be incorporated directly into response spectrum predictions. The application of this new modelling approach is demonstrated by examples based on the Chi‐Chi earthquake (Taiwan and South China), Gujarat earthquake (Northwest India), Nisqually earthquake (region surrounding Seattle) and Sumatran‐fault earthquake (recorded in Singapore). Field recordings have been obtained from these events for comparison with the proposed model. The accuracy of the stochastic simulations and the regression analysis have been confirmed by comparisons between the model calculations and the actual field observations. It is emphasized that obtaining representative estimates for Q for input into the model is equally important.Thus, this paper forms part of the long‐term objective of the authors to develop more effective communications across the engineering and seismological disciplines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
73.
74.
In this paper, the four-dimensional variational data assimilation technique (4D-VAR) is presented as a tool to forecast floods. Our study is limited to purely hydrological flows and supposes that the weather, here a big rain, has been already forecasted by meteorological services. The technique consists in minimizing, in the sense of Lagrange, the cost function: a measure of the difference between calculated data and available observations, here the water level. This is done under constraints that are the equations of the physical model. In our case, we modified the shallow-water equations to include a simplified sediment transport model. The steepest descent algorithm is then used to find the minimum. This is made possible because we can compute analytically the gradient of the cost function by using the adjoint equations of the model. As an application of the 4D-VAR technique, the overflowing of the Chicoutimi River at the Chute-Garneau dam, during the 1996 flood, is investigated. It is found that the 4D-VAR method reduces the error in the water height forecast even when the erosion model is not activated. In terms of Lyapunov exponents, we estimate the predictability horizon of such an event to be about half-an-hour after a big rain. However, this limit of predictability can be increased by using more observations or by using a finer computational grid.  相似文献   
75.
Seismic wavefield scattering from a statistically randomly rough interface in a multilayered piecewise homogeneous medium is studied in 3D. The influence of the surface roughness on the scattered wavefield is analysed numerically by using a finite‐difference operator in the acoustic domain. Since interface scattering in the real practical sense is a 3D physical phenomenon, we show in this work that the scattering response of a randomly rough interface is not the same in 3D situations as in the 2D cases described in some earlier works. For a given interface roughness height in 3D, an interface roughness height at least three times greater is required to produce an equivalent phase scattering effect in 2D situations, for a given correlation length of the interface roughness scale. Based on observations from spectral analysis, we show that scattering results principally in de‐phasing and frequency band‐limiting of the incident wavefront, the frequency band‐limiting properties being comparable to cases reported in the literature for absorption and thin‐layer filtering. The interface scattering phenomenon should be critically considered when using amplitude and phase information from seismic signal during inversion processes.  相似文献   
76.
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.  相似文献   
77.
We present a new three-dimensional SV-wave velocity model for the upper mantle beneath South America and the surrounding oceans, built from the waveform inversion of 5850 Rayleigh wave seismograms. The dense path coverage and the use of higher modes to supplement the fundamental mode of surface waves allow us to constrain seismic heterogeneities with horizontal wavelengths of a few hundred kilometres in the uppermost 400 km of the mantle.The large scale features of our tomographic model confirm previous results from global and regional tomographic studies (e.g. the depth extent of the high velocity cratonic roots down to about 200–250 km).Several new features are highlighted in our model. Down to 100 km depth, the high velocity lid beneath the Amazonian craton is separated in two parts associated with the Guyana and Guapore shields, suggesting that the rifting episode responsible for the formation of the Amazon basin has involved a significant part of the lithosphere. Along the Andean subduction belt, the structure of the high velocity anomaly associated with the sudbduction of the Nazca plate beneath the South American plate reflects the along-strike variation in dip of the subducting plate. Slow velocities are observed down to about 100 km and 150 km at the intersection of the Carnegie and Chile ridges with the continent and are likely to represent the thermal anomalies associated with the subducted ridges. These lowered velocities might correspond to zones of weakness in the subducted plate and may have led to the formation of “slab windows” developed through unzipping of the subducted ridges; these windows might accommodate a transfer of asthenospheric mantle from the Pacific to the Atlantic ocean. From 150 to 250 km depth, the subducting Nazca plate is associated with high seismic velocities between 5°S and 37°S. We find high seismic velocities beneath the Paraná basin down to about 200 km depth, underlain by a low velocity anomaly in the depth range 200–400 km located beneath the Ponta Grossa arc at the southern tip of the basin. This high velocity anomaly is located southward of a narrow S-wave low velocity structure observed between 200 and 500–600 km depth in body wave studies, but irresolvable with our long period datasets. Both anomalies point to a model in which several, possibly diachronous, plumes have risen to the surface to generate the Paraná large igneous province (LIP).  相似文献   
78.
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.

Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon.  相似文献   

79.
80.
The dry‐stone retaining walls (DSRW) have been tipped as a promising solution for sustainable development. However, before recently, their behavior is relatively obscure. In this study, discrete element method (DEM) approach was applied to simulate the plane strain failure of these walls. A commercial DEM package (PFC2D™) was used throughout this study. The authors used a fully discrete approach; thus, both the wall and the backfill were modeled as discrete elements. The methodology for obtaining the micromechanical parameters was discussed in detail; this includes the three mechanical sub‐systems of DSRWs: wall, backfill and interface. The models were loaded progressively until failure, and then the results were compared with the full‐scale experimental results where the walls were loaded, respectively, with hydrostatic load and backfill. Despite its complexity and its intensive calculation time, DEM model can then be used to validate a more simplified approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号