首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   4篇
测绘学   32篇
大气科学   18篇
地球物理   43篇
地质学   41篇
海洋学   16篇
天文学   37篇
综合类   1篇
自然地理   18篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   9篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   9篇
  1998年   4篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1966年   2篇
  1963年   1篇
  1895年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
191.
The electron spin resonance (ESR) dating method was employed on quartz phenocrysts separated from pumice of the El Cajete and Battleship Rock Members of the Valles Rhyolite in the Valles caldera, New Mexico. The results of heating experiments indicate that Ti impurity centers have two components; a thermally stable one and a less stable, temperature sensitive one. ESR dates using the stable Ti center yield eruption ages of 59 ± 6 ka for the Battleship Rock Member and 53 ± 6 ka for the El Cajete Member while recent 14C dates (S. Reneau and J. Gardner, unpub. data) from carbonized logs in the El Cajete pumice indicate that its age is older than 50 ka. Our results indicate that volcanism in the Valles caldera is much younger than previously thought (≥ 130 ka) and that recent revisions to the post-0.5 Ma stratigraphy of Valles caldera are probably in error. The results suggest that ESR dating of quartz may be a useful method for obtaining ages of units in other Quaternary volcanic areas.  相似文献   
192.
南极中山站和戴维斯站均位于极隙区纬度附近,均安装了完全相同的感应式磁力计.选择两站的数据,1997年3月和1996年6、9、12月,运用信号互谱技术进行统计分析,结果得到:在中山站-戴维斯站,Pc5脉动出现时间范围较广,但以地方时中午/磁中午及磁午夜附近出现频次多,其振幅、传播及发生率季节变化不大.振幅白天变化小,中午有小峰,夜间有时有大值.传播方向白天以磁中午为界,晨侧向西传播,直至磁凌晨;昏侧向东传播,约在5:00MLT处转向.夜间约以20:00 MLT为界,之前向西传播,之后向东传播,磁黄昏附近,Pc5脉动传播方向变化较多,显得不规则.这些特征,反映了Pc5脉动在不同地方时段有不同的起源.  相似文献   
193.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   
194.
One of the most important parametrizations in general circulation models used for climate change experiments is that of the surface albedo. The results of an albedo feedback experiment carried out under the auspices of the US Department of Energy are presented. An analysis of long and short wave components of the model response shows that short wave response dominates changes in fixed to variable albedo experiments, but that long wave response dominates in clear to cloudy sky changes. Cloud distribution changes are also discussed and are related to changes in global sensitivity. At the surface, the heat balance change for perturbed sea surface temperatures is dominated by changes in latent heat flux and downward long wave radiation. If albedo is freed up however, the major contrast lies in the change in surface reflected short wave radiation, amplified by changes in downward short wave radiation caused by cloud amount changes.  相似文献   
195.
The meridional energy flux modelled by the Bureau of Meteorology Research Centre general circulation model is examined. It is divided into atmospheric and oceanic components, and the resolved atmospheric components in turn into mean and eddy circulations. Comparison with observations shows the modelled total planetary meridional energy transport to be low, but shows better agreement for the resolved atmospheric component alone. The overall patterns of the individual circulation and energy components of the model also agree well, although strengths and locations do show some discrepancies. The doubled CO2 climate change is analyzed in terms of the changes in each of the circulation and energy components. It is found that the changes are the relatively small residual of larger, and generally opposing changes in sensible heat and potential energy fluxes. Despite the general decrease in poleward energy flux, the poleward latent heat flux is found to increase. The reduction in poleward transport is found to be dominated by changes in the mean meridional circulation at low southern latitudes, and changes in both mean circulations and eddy fluxes elsewhere.  相似文献   
196.
The available full-disk reflectance spectra of Io in the range 0.3 to 2.5 μm have been interpreted by comparison with new laboratory spectra of a wide variety of natural and synthetic mineral phases in order to determine a surface compositional model for Io that is consistent with Io's other known chemical and physical properties. Our results indicate that the dominant mineral phases are sulfates and free sulfur derived from them, which points toward a low temperature and initially water-rich surface assemblage. Our current preferred mineral phase mixture that best matches the Io data and is simultaneously most consistent with other constraints, consists of a fine-grained particulate mixture of free sulfur (55 vol%), dehydrated bloedite [Na2Mg(SO4)2·xH2O] (30 vol%) ferric sulfate [Fe2(SO4)3·xH2O] (15 vol%), and trace amounts of hematite [Fe2O3]. Other salts may be present, such as halite and sodium nitrate, as well as clay minerals. Such a model is consistent with a probable pre- and post-accretion thermal history of Io-forming material and Io's observed Na emission and other properties. These results further support the evaporite surface hypothesis of Fanale et al'; while not precluding the presence of certain silicate phases such as montmorillonite.The average surface of Io's leading hemisphere appears to contain less free sulfur and more salts and to be finer grained than that of the trailing hemisphere. Since Io is immersed in Jupiter's magnetosphere, irradiation damage effects from low-energy proton bombardment were studied. Irradiation damage of lattices is estimated to be a relatively minor but operative process on the surface of Io; irradiation darkening by sulfate reduction to free sulfur and by F-center production in salts may be partly responsible for the differences in albedo of leading and trailing hemispheres and equatorial and polar regions of Io, but slight regional differences in relative intrinsic phase concentration on the surface may likewise account for these global variations in albedo.Possible unusual surface properties predicted by this model include: posteclipse darkening in certain wavelenghts, limb brightening in certain wavelengths, and unusual surface electrical properties. Further refinement of Io's surface composition model and better understanding of surface irradiation effects will be possible when observational data in the range 0.20 to 0.30 μm are obtained and when improved spectra in the range 0.30 to 5.0 μm are obtained having increased spectral, spatial, and temporal resolution.  相似文献   
197.
198.
199.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   
200.
Exchange of CO2 and H2O between the Mars regolith and the atmosphere-cap system plays an important role in governing the evolution of the martian atmosphere and the martian climate. Most of the exchangeable CO2 (perhaps one or two orders of magnitude more than the atmospheric inventory) is currently adsorbed on the deep regolith, and can be “cryopumped” to a large quasipermanent CO2 cap (not now present) during lowest Mars obliquity (θ). During the obliquity driven regolith-cap CO2 exchange cycle, the atmospheric pressure varies harmonically between ~0.1 mb (lowest Θ) and ? 20 mb (highest Θ). The regolith buffer plays only a small or negligible role in the seasonal CO2 pressure variations caused by atmosphere-cap exchange because adsorption greatly inhibits diffusion of the seasonal “pressure wave” into the regolith. In contrast, thermally driven H2O seasonal exchange between the atmosphere and regolith appears to be in large part responsible for observed seasonal variations in the small atmospheric H2O inventory. Long term exchange of H2O may be dominated by transfer between the polar caps and ice in the regolith. Available and potential tests of regolith-atmospheric-cap volatile exchange models using ground-based and spacecraft-based techniques are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号