首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   584篇
  免费   10篇
  国内免费   6篇
测绘学   13篇
大气科学   75篇
地球物理   129篇
地质学   256篇
海洋学   16篇
天文学   83篇
综合类   2篇
自然地理   26篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   5篇
  2016年   18篇
  2015年   12篇
  2014年   14篇
  2013年   17篇
  2012年   16篇
  2011年   19篇
  2010年   27篇
  2009年   29篇
  2008年   25篇
  2007年   19篇
  2006年   31篇
  2005年   22篇
  2004年   22篇
  2003年   16篇
  2002年   9篇
  2001年   19篇
  2000年   5篇
  1999年   12篇
  1998年   10篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   12篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1979年   8篇
  1977年   6篇
  1975年   4篇
  1974年   11篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1957年   4篇
  1950年   4篇
排序方式: 共有600条查询结果,搜索用时 15 毫秒
11.
Group IID is the fifth largest group of iron meteorites and the fourth largest magmatic group (i.e., that formed by fractional crystallization). We report neutron-activation data for 19 (of 21 known) IID irons. These confirm earlier studies showing that the group has a relatively limited range in Ir concentrations, a factor of 5. This limited range is not mainly due to incomplete sampling; Instead, it seems to indicate low solid/liquid distribution coefficients reflecting very low S contents of the parental magma, the same explanation responsible for the limited range in group IVA. Despite this similarity, these two groups have very different volatile patterns. Group IVA has very low abundances of the volatile elements Ga, Sb and Ge whereas in group IID Ga and Sb abundances are the highest known in a magmatic group of iron meteorites and Ge abundances are the second highest (after group IIAB). Group IID appears to be the only large magmatic group having high volatile abundances but low S. In the volatile-depleted groups IVA and IVB it is plausible that S was lost as a volatile from a chondritic precursor material. Because group IID seems to have experienced minimal loss of volatiles, we suggest that S was lost as an early melt having a composition near that of the Fe–FeS eutectic (315 mg/g S). When temperatures had risen 400–500 K higher P-rich melts formed, became gravitationally unstable, and drained through the first melt to form an inner core that was parental to the IID irons. As discussed by [Kracher, A., Wasson, J.T., 1982. The role of S in the evolution of the parental cores of the iron meteorites. Geochim. Cosmochim. Acta 46, 2419–2426], it is plausible that a metal-rich inner core and a S-rich outer core could coexist metastably because stratification near the interface permitted only diffusional mixing. The initial liquidus temperature of the inner, P-rich core is estimated to have been 1740 K; after >60% crystallization the increase in P and the decrease in temperature may have permitted immiscibility with the S-rich outer core. We have not recognized samples of the outer core.  相似文献   
12.
The seasonality of physical, chemical, and biological water variables is a major characteristic of temperate, dimictic lakes. Yet, few investigations have considered the potential information that is encoded in seasonal dynamics with respect to the paleolimnological record. We used a one-year sequence of diatoms obtained from sediment traps and water samples, as well as the sedimentary diatom record covering the past ca. 1000 years in Bates Pond, Connecticut (USA), to investigate which variables influence the seasonal distribution of diatoms and how this can be used for the interpretation of the fossil record. The seasonal patterns in diatom assemblages were related to stratification and, to a lesser extent, to nitrate, silica, and phosphorus. During mixing periods in spring and autumn, both planktonic and benthic species were collected in the traps, while few lightly silicified, spindle-shaped planktonic diatoms dominated during thermal stratification in summer. Changes in fossil diatom assemblages reflected human activity in the watershed after European settlement and subsequent recovery in the 20th century. A long-term trend in diatom assemblage change initiated before European settlement was probably related to increased length of mixing periods during the Little Ice Age, indicated by the increase of taxa that presently grow during mixing periods and by application of a preliminary seasonal temperature model. We argue that the analysis of seasonal diatom dynamics in temperate lakes may provide important information for the refinement of paleolimnological interpretations. However, investigations of several lakes and years would be desirable in order to establish a more robust seasonal data set for the enhancement of paleolimnological interpretations.  相似文献   
13.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
14.
Dredged samples from the Geophysicist seamount volcano in the northeastern part of the Kurile Basin include volcanic and volcanoclastic rocks ranging from basalt to andesite. The rocks have geochemical features typical of high-K island-arc calc-alkaline volcanism. They are enriched in LILE and depleted in Zr, Ti, Nb, Ta and Y. The chondrite-normalized REE patterns are characterized by enrichment of LREE similar to those of island-arc lava from the submarine volcanoes of rear-arc zone of the Kurile Island Arc. The volcanic rocks have a wide range of 87Sr/86Sr ratios (0.70287-0.70652), varying 143Nd/144Nd and Pb isotopic ratios. Their trace-element compositions and Sr-Nd-Pb isotope signatures may be explained by a small addition of crustal continental component to mantle-derived magmas that suggest the existence of thinned continental basement under the eastern part of the Kurile Basin.  相似文献   
15.
Sediment samples collected in the Moradabad area, lying in the interfluve of the Ganga and Ramganga Rivers, were analysed for heavy metals, after studying the geomorphology of the area. Geomorphologically, the area can be divided into three terraces - the T0, T1 and T2 surfaces. The rivers on these three surfaces show varying amounts of pollution depending upon the input from industries and urban settlements. The Ramganga River on the T0 surface shows the highest amount of pollution. However, the pollution levels in all these rivers show a downstream dilution effect. The characteristic feature of the vast interfluve area (T2 surface) is the presence of several, independent basins which are closed and rarely interact with each other or with any river. The sediments are redistributed and redeposited within the basin itself, and thus these basins serve as sinks. The sediments of one such basin in the study area show significant concentrations of arsenic, chromium, copper, nickel, lead, zinc and organic carbon. The concentrations of heavy metals in such a basin will show exponential increases with time, because there is no activity to funnel out the sediments and dilute the effect of pollution. This increase will pose more threats, as ultimately it will make its way laterally and vertically through the sediments, thereby polluting groundwater.  相似文献   
16.
Strontium isotope evolution of Late Permian and Triassic seawater   总被引:7,自引:0,他引:7  
The 87Sr/86Sr values based on brachiopods and conodonts define a nearly continuous record for the Late Permian and Triassic intervals. Minor gaps in measurements exist only for the uppermost Brahmanian, lower part of the Upper Olenekian, and Middle Norian, and only sparse data are available for the Late Permian. These 219 measurements include 67 brachiopods and 114 conodont samples from the Tethyan realm as well as 37 brachiopods and one conodont sample from the mid-European Middle Triassic Muschelkalk Sea. The Late Permian/Lower Triassic interval is characterized by a steep 1.3 × 10−3 rise, from 0.7070 at the base of the Dzhulfian to 0.7082 in the late Olenekian, a rate of change comparable to that in the Cenozoic. In the mid-Triassic (Anisian and Ladinian), the isotope values fall to 0.7075, followed again by a rise to 0.7081 in the Middle/Late Norian. The 87Sr/86Sr values decline again in the Late Norian (Sevatian) and Rhaetian to 0.7076.The sharp rise in the 87Sr/86Sr values during the Late Permian/Early Triassic was coincident with widespread clastic sedimentation. Because of the paucity of tectonic uplifts, the enhanced erosion may have been due to intermittent humid phases, during mainly an arid interval, coupled with the absence of a dense protective land plant cover following the mass extinction during the latest Permian. The apex of the 87Sr/86Sr curve at the Olenekian/Anisian boundary coincides with cessation of the large-scale clastic sedimentation and also marks the final recovery of land vegetation, as indicated by the renewed onset of coal formation in the Middle Triassic. The rising 87Sr/86Sr values from the Middle Carnian to the Late Norian coincide with the uplift and erosion of the Cimmeride-Indosinian orogens marking the closure of the Palaeotethys. The subsequent Rhaetian decline that continues into Jurassic (Pliensbachian/Toarcian boundary), on the other hand, coincides with the opening of the Vardar Ocean and its eastern continuation in the Izmir-Ankara Ophiolitic Belt.Samples from the Upper Muschelkalk are more radiogenic than the global trend. This may reflect separation of the basin from the open ocean. Due to strong meteoric influx from a large land mass in the north, the Germanic Basin became increasing brackish up section in the north and east, but because of the high evaporation rates, the salt content was not much reduced in the southern and central basin where a rich, but increasingly endemic, marine fauna survived.  相似文献   
17.
The lead isotope composition of ocean water is not well constrained due to contamination by anthropogenic lead. Here the global distribution of lead isotopes in deep ocean water is presented as derived from dated (ca. 100 ka) surface layers of hydrogenetic Fe-Mn crusts. The results indicate that the radiogenic lead in North Atlantic deep water is probably supplied from the continents by river particulates, and that lead in Pacific deep water is similar to that characteristic of island and continental volcanic arcs. Despite a short residence time in deep water (80–100 a), the isotopes of lead appear to be exceedingly well mixed in the Pacific basin. There is no evidence for the import of North Atlantic deep water-derived lead into the Pacific ocean, nor into the North Indian Ocean. This implies that the short residence time of lead in deep water prohibits advection over such long distances. Consequently, any climate-induced changes in deep-water flow are not expected to result in major changes in the seawater Pb-isotope record of the Pacific Ocean.  相似文献   
18.
The state of knowledge of the Central European water mite fauna and the research history are briefly surveyed. Several areas for which we are provided with rich data sets are of high value for the monitoring of faunistic trends on the background of local and global environmental change. The need for a database combining historical and actual faunistic information is stressed. It should facilitate the access to all data from former times, give a survey on actual activities by regular updates, and help for a better organization of future research activities. On the base of an update of the Limnofauna Europaea (K.O. Viets 1978, Gerecke in www.watermite.org) a first attempt is made to (1) recognize changes in the Central European fauna during the past 100 years; (2) emphasize species which may be endangered or have disappeared during the past 100 years. At the present state of knowledge, the degree of threat to water mite species in this area is best calculated from their preference for particular habitat types which are rare and in danger to disappear in cultivated landscapes. Our knowledge concerning neozoic water mites in the study area is discussed.  相似文献   
19.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   
20.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号