首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   713篇
  免费   53篇
  国内免费   8篇
测绘学   23篇
大气科学   66篇
地球物理   182篇
地质学   247篇
海洋学   104篇
天文学   71篇
综合类   5篇
自然地理   76篇
  2023年   4篇
  2022年   8篇
  2021年   22篇
  2020年   19篇
  2019年   17篇
  2018年   35篇
  2017年   30篇
  2016年   41篇
  2015年   30篇
  2014年   20篇
  2013年   62篇
  2012年   49篇
  2011年   39篇
  2010年   48篇
  2009年   33篇
  2008年   37篇
  2007年   26篇
  2006年   27篇
  2005年   17篇
  2004年   23篇
  2003年   20篇
  2002年   12篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   10篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1971年   2篇
  1969年   2篇
排序方式: 共有774条查询结果,搜索用时 15 毫秒
101.
Reconstructions of past climate are important for providing a historical context for evaluating the nature of 20th century climate change. Here, a number of percentile-based palaeoclimate reconstructions were used to isolate signals of both phases of El Niño–Southern Oscillation (ENSO). A total of 92 (82) El Niño (La Niña) events were reconstructed since A.D. 1525. Significantly, we introduce the most comprehensive La Niña event record compiled to date. This annual record of ENSO events can now be used for independent verification of climate model simulations, reconstructions of ENSO indices and as a chronological control for archaeologists/social scientists interested in human responses to past climate events. Although extreme ENSO events are seen throughout the 478-year ENSO reconstruction, approximately 43% of extreme and 28% of all protracted ENSO events (i.e. both El Niño and La Niña phase) occur in the 20th century. The post-1940 period alone accounts for 30% of extreme ENSO years observed since A.D. 1525. These results suggest that ENSO may operate differently under natural (pre-industrial) and anthropogenic background states. As evidence of stresses on water supply, agriculture and natural ecosystems caused by climate change strengthens, studies into how ENSO will operate under global warming should be a global research priority.  相似文献   
102.
Hydrographic data, including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study, were combined with remotely-sensed SeaWiFS data to estimate POC concentration using principal component analysis (PCA). The spectral radiance was extracted at each NEGOM station, digitized, and averaged. The mean value and spurious trends were removed from each spectrum. De-trended data included six wavelengths at 58 stations. The correlation between the weighting factors of the first six eigenvectors and POC concentration were applied using multiple linear regression. PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with R 2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square error, mean ratio and standard deviation) showed similar error estimates, and suggest that spectral variations in the modes defined by just the first four characteristic vectors are closely correlated with POC concentration, resulting in only negligible loss of spectral information from additional modes. The use of POC algorithms greatly increases the spatial and temporal resolution for interpreting POC cycling and can be extrapolated throughout and perhaps beyond the area of shipboard sampling.  相似文献   
103.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   
104.
The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF-Hydro model. WRF and WRF-Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface-atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.  相似文献   
105.
The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi-purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial- and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process-based reservoir network module is implemented into NOAH-HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF-HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground-soil-vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH-HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.  相似文献   
106.
The Q-natural flood management project has co-developed with the Environment Agency 18 monitored micro-catchments (~1 km2) in Cumbria, UK installing calibrated flumes aimed at quantifying the potential shift in observed flows resulting from a range of nature-based-solutions installed by local organizations. The small-scale reduces the influence of variability characterizing larger catchments that would otherwise mask any such shifts, which we attempt to relate to a shift in model parameters. This paper demonstrates an approach to applying donor-parameter-shifts obtained from modelling two of the paired micro-catchments to a much larger scale, in order to understand the potential for improved distributed modelling of nature-based solutions in the form of additional tree-planting. The models include a rainfall-runoff model, Dynamic Topmodel, and a 2D hydrodynamic model, JFlow, permitting analysis of changes in hillslope processes and channel hydrodynamics resulting from a range of distributed measures designed to emulate natural hydrological processes that evaporate, store or infiltrate flows. We report on attempts to detect shift in hydrological response using one of the paired-micro-catchment moorland versus forestry sites in Lorton using Dynamic Topmodel. A donor-parameter-shift approach is used in a hypothetical experiment to represent new woodland in a much larger catchment, although testing all combinations of spatial planting strategies, responses to multiple-extremes, failure-modes and changes to synchronization becomes intractable to support good decision making. We argue that the problem can be re-framed to use donor-parameter-shifts at multi-local-scale catchments above communities known to be at risk, commensurate with most of the evidence of NbS impacts being effective at the small scale (ca. 10 km2). This might lead to more effective modelling to help catchment managers prioritize those communities-at-risk where there is more evidence that NbS might be effective.  相似文献   
107.
Wildlife governance principles (WGPs) identify desirable governance characteristics for wildlife conservation in the United States (US). The types of institutional, ecological, and socio-cultural challenges that WGPs are designed to address also affect governance of public natural resources other than wildlife and in places other than the US. This raises the possibility that a similar set of governance principles might help natural resource professionals working in other resource contexts address the particular challenges they face. We describe the process by which we developed WGPs and offer seven practically oriented questions to help natural resource professionals ascertain whether a similar set of principles could improve governance in their context. In some contexts, minor modification of WGPs might be appropriate; in others, the process by which we developed WGPs could serve as a blueprint for formulating appropriate principles.  相似文献   
108.
An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.  相似文献   
109.
Multiple Random Walk Simulation consists of a methodology adapted to run fast simulations if close-spaced data are abundant (e.g., short-term mining models). Combining kriging with the simulation of random walks attempts to approximate traditional simulation algorithm results but at a computationally faster way when there is a large amount of conditioning samples. This paper presents this new algorithm illustrating the situations where the method can be used properly. A synthetic study case is presented in order to illustrate the Multiple Random Walk Simulation and to analyze the speed and goodness of its results against the ones from using Turning Bands Simulation and Sequential Gaussian Simulation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号