首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   16篇
  国内免费   9篇
测绘学   58篇
大气科学   31篇
地球物理   133篇
地质学   165篇
海洋学   32篇
天文学   143篇
综合类   5篇
自然地理   34篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   20篇
  2017年   22篇
  2016年   19篇
  2015年   12篇
  2014年   22篇
  2013年   28篇
  2012年   23篇
  2011年   29篇
  2010年   26篇
  2009年   40篇
  2008年   20篇
  2007年   23篇
  2006年   34篇
  2005年   22篇
  2004年   18篇
  2003年   15篇
  2002年   18篇
  2001年   14篇
  2000年   15篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   12篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1974年   3篇
  1973年   4篇
  1972年   5篇
  1971年   3篇
  1970年   5篇
排序方式: 共有601条查询结果,搜索用时 15 毫秒
91.
92.
93.
The stationary, spherically symmetric, polytropic and inviscid accretion flow in the Schwarzschild metric has been set-up as an autonomous first-order dynamical system, and it has been studied completely analytically. Of the three possible critical points in the flow, the one that is physically realistic behaves like the saddle point of the standard Bondi accretion problem. One of the two remaining critical points exhibits the strange mathematical behaviour of being either a saddle point or a centre-type point, depending on the values of the flow parameters. The third critical point is always unphysical and behaves like a centre-type point. The treatment has been extended to pseudo-Schwarzschild flows for comparison with the general relativistic analysis.  相似文献   
94.
Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982–2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ~44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.  相似文献   
95.
Submarine lava flow morphology is commonly used to estimate relative flow velocity, but the effects of crystallinity and viscosity are rarely considered. We use digital petrography and quantitative textural analysis techniques to determine the crystallinity of submarine basaltic lava flows, using a set of samples from previously mapped lava flow fields at the hotspot-affected Galápagos Spreading Center. Crystallinity measurements were incorporated into predictive models of suspension rheology to characterize lava flow consistency and rheology. Petrologic data were integrated to estimate bulk lava viscosity. We compared the crystallinity and viscosity of each sample with its flow morphology to determine their respective roles in submarine lava emplacement dynamics. We find no correlation between crystallinity, bulk viscosity, and lava morphology, implying that flow advance rate is the primary control on submarine lava morphology. However, we show systematic variations in crystal size and shape distribution among pillows, lobates, and sheets, suggesting that these parameters are important indicators of eruption processes. Finally, we compared the characteristics of lavas from two different sampling sites with contrasting long-term magma supply rates. Differences between lavas from each study site illustrate the significant effect of magma supply on the physical properties of the oceanic upper crust.  相似文献   
96.
This study presents a seismic fragility analysis of low‐rise masonry in‐filled (MI) reinforced concrete (RC) buildings using a proposed coefficient‐based spectral acceleration method. The coefficient‐based method, without requiring any complicated finite element analysis, is a simplified procedure for assessing the spectral acceleration demand (or capacity) of buildings subjected to earthquakes. This paper begins with a calibration of the proposed coefficient‐based method for low‐rise MI RC buildings using published experimental results obtained from shaking table tests. Spectral acceleration‐based fragility curves for low‐rise MI RC buildings under various inter‐story drift limits are then constructed using the calibrated coefficient‐based method. A comparison of the experimental and estimated results indicates that the simplified coefficient‐based method can provide good approximations of the spectral accelerations at peak loads of low‐rise MI RC buildings, if a proper set of drift‐related factors and initial fundamental periods of structures are used. Moreover, the fragility curves constructed using the coefficient‐based method can provide a satisfactory vulnerability evaluation for low‐rise MI RC buildings under a given performance level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
97.
Stable isotopes of benthic foraminifera have widely been applied in micropalaeontological research to understand vital effects in foraminifera. Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. Discontinuous abundance of a species for isotopic analysis has forced us to select multiple species from down-core samples. Thus standardisation factors are required to convert isotopic values of one species with respect to other species. The present study is pursued on isotopic values of different pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to understand habitat-wise isotopic variation and estimation of isotopic correction factors for the paired species (Cibicides wuellerstorfi–Bulimina marginata, Ammonia spp.–Loxostomum amygdalaeformis and Bolivina seminuda–Nonionella auris). Infaunal species (B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms (C. wuellerstorfi, L. amygdalaeformis and B. seminuda). These lighter \(\updelta ^{13}\) \(\hbox {C}\) values are related to utilisation of \(\hbox {CO}_{2}\) produced by anaerobic remineralisation of organic matter. However, enrichment of \(\updelta ^{18}\) \(\hbox {O}\) for the deeper microhabitat (bearing lower pH and decreased \({\hbox {CO}_{3}}^{2-})\) is only recorded in case of B. marginata. It is reverse in case of N. auris and related to utilisation of respiratory \(\hbox {CO}_{2}\) and internal dissolve inorganic carbon pool. Estimation of interspecies isotopic correction factors for the species pairs (\(\updelta ^{13}\) \(\hbox {C}\) of C. wuellerstorfiB. marginata, L. amygdalaeformisAmmonia spp., N. aurisB. seminuda) and \(\updelta ^{18}\) \(\hbox {O}\) of C. wuellerstorfiB. marginata are statistically reliable and may be used in palaeoecological studies.  相似文献   
98.
Dune bedforms and salt‐wedge intrusions are common features in many estuaries with sand beds, and yet little is known about the interactions between the two. Flow visualization with an echosounder and velocity measurements with an acoustic Doppler current profiler over areas of flat‐bed and sand dunes in the highly‐stratified Fraser River estuary, Canada, were used to examine the effect of dunes on interfacial mixing. As the salt‐wedge migrates upstream over the flat‐bed, mixing is restricted to the lower portion of the water column. However, as the salt‐wedge migrates into the dune field from the flat bed, there is a dramatic change in the flow, and large internal in‐phase waves develop over each of the larger dunes, with water from the salt‐wedge reaching the surface of the estuary. The friction Richardson number shows that bed friction is more important in interfacial mixing over the dunes than over the flat‐bed, and a plot of internal Froude Number versus obstacle (dune) height shows that the salt‐wedge flow over the dunes is mainly supercritical. Such bedforms can be expected to cause similar effects in interfacial mixing in other estuaries and sediment‐laden density currents, and may thus be influential in fluid mixing and sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
99.
Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for non-tidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.  相似文献   
100.
Smectitic parent material from the weathering Deccan basalt has been deposited in the lower piedmont plains, valleys and microdepressions during a previous wetter climate. The cracking clay soils (Vertisols) were developed in such alluvium during drier climate of the Holocene period. In India they occur in humid tropical (HT), sub-humid moist (SHM), sub-humid dry (SHD), semi-arid moist (SAM), semi-arid dry (SAD) and arid dry (AD) climatic environments and thus indicate an array of soils in a climosequence.The soils show a change in their morphological, physical, chemical and micromorphological properties in the climosequence. Soils of HT climate are dominated by Ca++ ions in their exchange complex throughout depth. However, in the sub-humid climates Mg++ ions tend to dominate in the lower horizons. The sub-humid moist to aridic climatic environments caused a progressive formation of pedogenic calcium carbonates (PC) with the concomitant increase in Na+ ions in soil solution. This facilitated the translocation of Na-clay in the soil profile. This is responsible for the increase in pH, decrease in Ca/Mg ratio of exchange sites with depth and finally in the development of subsoil sodicity. The reduction in mean annual rainfall (MAR) from sub-humid moist to arid climates accelerated the formation of PC and thus the soils of semi-arid and arid climates (SAM, SAD and AD) are more calcareous and sodic than soils of other climates (SHM and SHD).Formation of PC, illuviation of clay and the development of subsoil sodicity are concurrent, contemporary and active pedogenetic processes operating during the climate change of the Holocene period. These processes impaired the hydraulic properties of soils in general, and in soils of drier climates in particular. As a result, cracking pattern, chemical composition and plasmic fabric were more modified in soils of the drier climates. Such modifications in soil properties have a place in the rationale of Vertisol order of the US Soil Taxonomy. The soils of wetter climates (HT, SHM and SHD) are grouped in Typic Haplusterts whereas the soils of drier climates (SAM, SAD and AD) are classified as Aridic Haplusterts, Sodic Haplusterts and Sodic Calciusterts. The present study demonstrates how the intrinsic soil properties of the cracking clay soils in a climosequence may help in inferring the change in climate in a geologic period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号